

Figure 1 Spontaneous magnetization for $J=1 / 2, J=1$, and $J=\infty$.

Figure 2 Graphical illustration of Brillouin function and spontaneous magnetization. At $T>T_{c}$ the dotted line crosses only at the origin $(\alpha=0)$ and at $T<T_{c}$ the dashed line hits at $\alpha \neq 0$. At $T=T_{c}$ a solid line becomes tangent.

Figure 3 Curie - Weiss laws with (a) $\theta>0$ and (c) $\theta<0$ compared with (b) Curie law.

For spontaneous magnetisation $\mathrm{H}=0$, hence the form of (7) becomes
$\left.\chi=g J \mu_{\mathrm{B}} \gamma \mathrm{M}\right) / \mathrm{KT}$
$\mathrm{M}=\mathrm{KT} \alpha / \mathrm{gJ} \mu_{\mathrm{B}} \gamma$

Now a graph is plotted between M and χ. The eq (8) represents a straight line whose slope is proportional to T. The graph is shown in figure 2.
For $\mathrm{T}<\mathrm{T}_{\mathrm{f}}$ (Curie point i.e. temperature at and above which spontaneous magnetisation vanishes), the spontaneous magnetisation occurs.

For $\mathrm{T}=\mathrm{T}_{\mathrm{f}}$ the straight line represented by (8) becomes tangent of the curve.
For $\mathrm{T}>\mathrm{T}_{\mathrm{f}}$, the spontaneous magnetisation vanishes .
In order to establish a relation between the curie temperature T_{f}, the spontaneous magnetisation vanishes .

