Derivation of Magnon or ferromagnetic spin wave Dispersion

Relation : To obtain a relation between frequency of spin waves

and lattice constant, we consider the spin S_i at the site i and it is

coupled with nearest neighbour spins S_{i-1} and s_{i+1} . H is an

effective magnetic field on the spin , a is lattice constant and $\omega\,$ is

frequency of spin waves .

Semi-classical derivation

Linear chain of aligned spins (S=Sz, Sx=Sy=0)

Small perturbation Sz~S, Sx,Sy<<S

Spins treated as classical vectors

Time dependence of expected value of <Sj>

$$\hat{\mathcal{H}} = -2\mathsf{J}\sum_{i}\hat{\mathbf{S}}_{i}\cdot\hat{\mathbf{S}}_{i+1}$$

 dS_{j}^{x} $\approx \frac{2JS}{\hbar}(2S_j^y - S_{j-1}^y - S_{j+1}^y)$ dt dS_i^y $\approx -\frac{2JS}{\hbar}(2S_j^x - S_{j-1}^x - S_{j+1}^x)$ $\frac{\mathrm{d}S_j^z}{\mathrm{d}t}\approx 0.$

 $\frac{\mathrm{d}\langle \hat{\mathbf{S}}_j \rangle}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \langle [\hat{\mathbf{S}}_j, \hat{\mathcal{H}}] \rangle$ $= -\frac{2\mathbf{J}}{\mathbf{i}\hbar} \langle [\hat{\mathbf{S}}_{j}, \dots + \hat{\mathbf{S}}_{j-1} \cdot \hat{\mathbf{S}}_{j} + \hat{\mathbf{S}}_{j} \cdot \hat{\mathbf{S}}_{j+1} + \dots] \rangle$ $= -\frac{2\mathsf{J}}{\mathsf{i}\hbar} \langle [\hat{\mathbf{S}}_j, \hat{\mathbf{S}}_{j-1} \cdot \hat{\mathbf{S}}_j] + [\hat{\mathbf{S}}_j, \hat{\mathbf{S}}_j \cdot \hat{\mathbf{S}}_{j+1}] \rangle$ $=\frac{2\mathsf{J}}{\hbar}\langle \hat{\mathbf{S}}_{j}\times(\hat{\mathbf{S}}_{j-1}+\hat{\mathbf{S}}_{j+1})\rangle.$

Raising and lowering operators are defined as:

$$\hat{S}^+ = \hat{S}^x + i\hat{S}^y$$
$$\hat{S}^- = \hat{S}^x - i\hat{S}^y$$

Commutation relations

 $\hat{\mathbf{S}}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2 = \hat{S}_z^2 + \frac{1}{2} \left(\hat{S}^+ \hat{S}^- + \hat{S}^- \hat{S}^+ \right)$

 $\hat{S}^{+}\hat{S}^{-} + \hat{S}^{-}\hat{S}^{+} = 2\left[(\hat{S}^{x})^{2} + (\hat{S}^{z})^{2}\right]$