Problems

- 1. For a d⁷ metal ion determine the energy ratios for allowed transitions at Δ_{oct}/B of 20.
- 2. For a d⁶metal ion of $\Delta_{oct}/B = 30$ and B=530 cm⁻¹ what would the energies of the 5 allowed transitions be? How many are in the UV-Vis range? How many are in the IR range?
- 3. Write out the allowed transitions for a d⁵ metal ion in a E/B> 28 ligand field.
- 4. A d^4 complex exhibits absorptions at 5500 cm⁻¹ (strong) and 31350 cm⁻¹ (weak). What are the transitions that are being exhibited in the complex? What is the corresponding Δ_{oct} for the complex?
- 5. A spectrum of d^7 metal complex seemingly exhibits only two intense transitions. What is the Δ_{oct}/B that this situation occurs? Please use reference to specific transitions and energy splitting.

Answers

- 1. Δ_{oct}/B of 20 yields E/B values of 38, 32, 18. Ratios then are 2.11 and 1.78
- 2. $\Delta_{\text{oct}}/B = 30$ yields E/B heights of 27, 40, 57, 65, 85. Energies are then 14310, 21200, 30210, 34450 and 45050 cm⁻¹. All are in the UV-Vis range. *note you need to infer the E/B value for the last transition as the diagram does not extend that far up.
- 3. ${}^{2}A_{2g}$ <- ${}^{2}T_{2g}$, ${}^{2}T_{1g}$ <- ${}^{2}T_{2g}$, ${}^{2}E_{g}$ <- ${}^{2}T_{2g}$, and ${}^{2}A_{1g}$ <- ${}^{2}T_{2g}$.
- 4. 31,350/5,500 gives a ratio of 5.7/1. The only $\Delta_{\rm oct}/B$ value that matches is at 10. B value is then 550 cm⁻¹. $\Delta_{\rm oct}$ equals 5500 cm⁻¹.
- 5. Three transitions are generated at low Δ_{oct}/B . However, at about a value of Δ_{oct}/B = 13 the transitions ${}^4A_{2g}$ <- ${}^4T_{1g}$, and ${}^4T_{1g}$ <- ${}^4T_{1g}$ have the same energies which results in the appearance of only two absorptions.