CLASSIFICATION OF AXIS OF SYMMETRY

CLASSIFICATION OF PLANE OF SYMMETRY:

$$\begin{array}{c}
\sigma \text{ BF}^1 \\
\sigma \text{ BF}^2 \\
\sigma \text{ BF}^3
\end{array}$$

$$\begin{array}{c}
1 \text{ } \sigma \text{h i.e. molecular Plane} \\
F_3 \\
F_4
\end{array}$$

Eg: Staggered Ethane: 30d

PCI_s: 1C₃, 3C₂, 3σ_V, 1σh

1 C₃ axis: Passing through. Cl¹-P-Cl⁴

3 C₃ axis:

C₂ Passing through.

interchanging Cl1/Cl4

C₂ Passing through.

C₂ Passing through.

interchanging Cl1/Cl4

interchanging Cl1/Cl4

Planes:

 σ_v bisecting $Cl^1 Cl^2 Cl^4 P$ reflecting Cl³/Cl⁵

 $\sigma_{\rm v}$ bisecting ${\rm Cl}^1\,{\rm Cl}^3\,{\rm Cl}^4\,{\rm P}$ reflecting $\sigma_{\rm v}$ bisecting ${\rm Cl}^1\,{\rm Cl}^5\,{\rm Cl}^4\,{\rm P}$ reflecting

Cl²/Cl⁵

 Cl^2/Cl^3

 σ_v bisecting $Cl^2 Cl^3 Cl^5 P$

reflecting Cl¹/Cl⁴

 $\ln PCl_5$ replace 2Cl with 2 Br and Keep all elements as such.

C_{nv} Point Group: 1.

$$C_{nV} = C_n + n \sigma_V$$

$$\begin{array}{cccc}
C_n & & \\
\downarrow & \downarrow & \downarrow \\
C_n & C_{nv} & C_{nl}
\end{array}$$

$$C_{2V} = C_2 + 2 \sigma_v \qquad \text{no. of operation} = 2n = 4$$

$$eg: \qquad C_3V = C_3 + 3\sigma_v \qquad \text{no. of operation} = 2n = 6$$

$$C_{4V} = C_4 + 4\sigma_v \qquad \text{no. of operation} = 2n = 8$$

Total no. of operation of elements = order of group = 2 n

(2)
$$C_{nh}$$
 Point Group: $C_{nh} = C_n + \sigma_h$

eg:
$$C_{2h} = C_2 + \sigma_h \qquad \text{no. of operation} = 2n = 4$$

$$C_{3h} = C_3 + \sigma_h \qquad \qquad = 6$$

$$C_{4h} = C_4 + \sigma_h \qquad \qquad = 8$$

Total no. of operation is known as order of group.

(3) D_n Point Group: no. of operation = 4n

$$D_n = C_n + nC_2$$

$$D_n d = C_n + nC_2 + \sigma_d$$

$$D_n h = C_n + nC_2 + n\sigma_v + \sigma_h$$

Any molecule having either 1 C_2 or $3C_2$ not having 2 C_2 always.

$$\begin{array}{ccc} & & & & & & \\ & & & & \\ \hline & &$$

$$C_2$$
, $2\sigma_v = C_{2v}$

 $C_2 \times 2\sigma_v = C_{2v}$

 $C_2 \times 2\sigma_v = C_{2v}$

F

Cs only plane of symmetry

The molecule having only one plane not any axis then called they fall in C_s point group.

$$I$$

$$C_2 + 2C_2 + 2\sigma_v + \sigma_h$$

$$= D_{2h}$$

$$C_2, 2\sigma_v = C_{2V}$$

 C_s

$$\bigvee_{C_2, 2\sigma_v = C_{2V}}$$

 $C_2 + \sigma_h = C_{2h}$

$$C_{\infty} + \infty C_2 + \infty \sigma_{v} + \sigma_{h} = D_{\infty_{h}}$$

$$C_n = \frac{360}{\theta} = n$$

 $n = \infty$ n =because θ^o is so much small then $n = \infty$

R

 \mathbf{C}_{s}

 $C_2 + \sigma_h = C_{2h}$ $C_2 + 2\sigma_v = C_{2v} \qquad C_2 + 2\sigma_v = C_{2v}$

Example: H₃PO₄

We will state the point group of any molecule in its highest stable arrangement.

Example:

Consider CH₃ as a point then point group C_{3V}.

Example:

Consider OH as a, point then. OH point group C_{3V}.

means

Type molecule

EXAMPLE: H2O2:

Having 3 structures - Cis, Trans, Open book

O-O
H Cis
$$C_2+2\sigma_v=C_{2v}$$

$$C_2 + 2\sigma_v = C_{2v}$$

dihedral angle = 0C is having no dihedral angle

Trans

$$C_2+\sigma_h=C_{2h}$$

dihedral angle =180°

Trans having many dihedral angle.

C2 point group