L.S COLLEGE MUZAFFARPUR

B. R. A. BIHAR UNIVERSITY

Dr. Priyanka

Department of Chemistry

TOPIC:- Group-wise systematic study of p-block elements

Group-13 Hydrides

Hydrides

The elements form tri-hydrides (MH₃), the stability decreases on moving down the group. They are electron deficient compounds. Boron forms a series of volatile hydrides called boranes (by analogy with alkanes and silanes). They fall into two series:

```
\begin{split} &B_n\,H_{n+4}\colon B_2H_6,\,B_5H_9,\,B_6H_{10},\,B_8H_{12},\\ &B_{10}H_{14}\,B_n\,H_{n+\,6}\!\!\colon B_4H_{10},\,B_5H_{11},\,B_6H_{12},\\ &B_9H_{15} \end{split}
```

They are named by indicating the number of boron atoms. If two or more boranes have the same number of B atoms, then the H atoms are also specified, e.g. B_5H_9 and B_5H_{11} are named pentaborane – 9 and pentaborane – 11 respectively.

Diborane is the simplest and most extensively studied hydride. It is an important reagent in synthetic organic chemistry. It may be prepared by various ways:

Diethyl Ether

 $4BF_3.OEt_2 + 3LiAIH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AIF_3 + 4Et_2O$

Boron tri-fluoride etherate

Diglyme

 $2NaBH_4 + I_2 \longrightarrow B_2H_6 + 2NaI + H_2$

Sodium borohydride

 $2NaBH_4 + H_2SO_4 \quad 2H_3PO_4 \longrightarrow B_2H_6 + 2H_2 + Na_2SO_4 \quad 2Na_2HPO_4$

It is a colourless gas, which burns in air and is readily hydrolyzed.

 $B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O$

B₂H₆+ 6H₂O → 2H₃BO₃ + 6H₂

Diborane undergoes addition reaction with alkenes and alkynes in ether at room temperature to form organo-boranes.

 $6RCH = CH_2 + B_2H_6$ \rightarrow $2B(CH_2CH_2R)_3$

This is known as hydroboration reaction. The structure of diborane is of great interest as it is an electron deficient compound having only twelve electrons, which are insufficient to form the required number of bonds. Each boron has three electrons and can form a BH₃ unit each but how will the two units be held together?

Diborane is found to have a bridge structure in which each B atom is bonded to two H atoms (called terminal H atom) by regular electron pair bonds. The resulting two BH₂ units are bridged by two H atoms (the bridge H atoms), which are at a plane perpendicular to the rest of the molecule and prevent rotation between the two B atoms. The structure has been confirmed by electron diffraction, infrared and Raman spectroscopic methods. Four hydrogen atom are in an environment different from the other two – this is confirmed by Raman spectra and by the fact that diborane cannot be methylated beyond the tetra methyl derivative without breaking the molecule into BMe₃

The terminal B-H bond distances are the same as in nonelectron deficient compounds. These are normal two centre two – electron bonds (2c-2e). Electron deficiency is thus associated with the bridge bonds. The four bridge bonds involve only four electrons – a pair of electrons is involved in binding three atoms – B, H and B. these bonds are called three-centre-two- electron-bonds (3c-2e).

Each B atom is sp³ hybridized giving four sp³ hybrid orbitals. B has three valence electrons so three orbitals are filled singly. Two of the sp³ hybrid orbitals on each B overlap with the 1s orbitals of H forming four 2c - 2e bonds.

Then one singly filled sp^3 hybrid orbital on one B atom, and one vacant sp^3 hybrid orbital on another B atom overlap with a singly filled 1s orbital on one H atom to form a bonding orbital shaped like a banana embracing all three nuclei Another 3c - 2e bond is formed similarly (fig 3)

Diborane

Most syntheses of the higher boranes involve heating B_2H_6 , sometimes with hydrogen. Most of the higher boranes are liquids but B_6 H_{10} and B_{10} H_{14} are solids. They were considered to be potential rocket fuels, but interest in this was soon diverted as it was found that on combustion they formed a polymer, which blocked the nozzles.

The higher boranes have an open cage structure (fig4). The structures involve 2c - 2e bonds between B and H and B - B and 3c - 2e bonds involving B-H-B and B-B-B. Closed 3c-2e bonds of the type are also known.

Borohydrides

Borohydrides like NaBH₄, Al(BH₄)₃ contain the tetrahydroborate (III) anion, BH₄. In these

compounds boron has a complete octet and thus they are more stable than the boranes. Sodium borohydride is obtained by the reaction between sodium hydride and methyl borate.

4NaH+B(OMe)₃ NaBH₄ + 3CH₃ONa

Other borohydrides may be obtained from NaBH₄. The BH₄ ion has a tetrahedral structure, NaBH₄ is a useful reagent used in reduction of aldehydes and ketones.

Hydrides of other members

Other members of Group 13 form a few hydrides which are polymeric in nature e.g. $(AlH_3)_n$, $(GaH_3)_n$ and $(InH_3)_n$ and contain M-H-M bridges. Their stability decreases on moving down the group. $(AlH_3)_n$ is the best known and is prepared by the action of pure H₂SO₄ or Al Cl₃ on lithium aluminium hydride in ether.

2LiAlH₄ + H₂SO₄ _____ 2/n (AlH₃)_n+LiSO₄+2H₂

3LiAlH₄ + AlCl₃ + 4/n (AlH₃)n + LiCl.

It is a colourless and thermally unstable solid and reacts violently with water.

2(AlH₃)_n + 6_nH₂O 2nAl(OH)₃+ 9n H₂

A complex hydride of aluminium, lithium aluminium hydride is well known. It is prepared from lithium hydride and aluminium chloride in ether.

It is a powerful reducing agent and is widely used in organic chemistry. The borohydrides of aluminium, beryllium and the transition metals are covalent. In Al $(BH_4)_3$ each BH^- unit forms two hydrogen bridges while in Be $(BH_4)_2$ each BH^- unit forms three hydrogen bridges

(Fig 5)

Fig.5: Structures of (a). $AL(BH_4)_3$ (b) $Be(BH_4)_2$