TDC Part I Paper I, Group B Inorganic Chemistry

Department of Chemistry

L.S COLLEGE MUZAFFARPUR B. R. A. BIHAR UNIVERSITY Dr. Priyanka

TOPIC:- Oxides (Group 16)

Oxides

Oxygen reacts with practically all elements in the periodic table, except lighter noble gases, to form oxides. Oxides may be classified as:

- Normal oxides Here oxygen shows oxidation state of -2. They may be ionic or covalent eg. CaO, CO₂,
- ii) Peroxides These contain O-O linkage eg. H₂O₂, Na₂O₂
- Suboxides They involve bonds between atoms of the element, in addition to bonds between element and oxygen e.g. C₃O₂ (O=C=C=C=O)
- Superoxides They contain O ion and are formed by some alkali metals eg. KO₂

Oxides may also be classified as acidic, basic, neutral or amphoteric depending on their reaction with water.

Acidic oxides (oxides of non-metals) dissolve in water giving acidic solution and react with bases forming salt and water eg CO₂, SO₂, SO₃, and NO₂ etc.

$$SO_3 + H_2O$$
 \longrightarrow H_2SO_4
 $SO_3 + 2NaOH$ \longrightarrow $Na_2SO_4 + H_2O$

Basic oxides (oxides of metals) may dissolve in water to give alkaline solutions. They all dissolve in acids to give salt and water eg. Na₂O, MgO etc.

$$Na_2O + H_2O$$
 \longrightarrow $2NaOH$ $Na_2O + 2HCl$ \longrightarrow $2NaCl + H_2O$

Amphoteric oxides dissolve in both acids and bases eg. Al₂O₃, ZnO etc.

$$ZnO + 2HCl$$
 \longrightarrow $ZnCl_2 + H_2O$ \longrightarrow $Na_2 [Zn(OH)_4]$ $Al_2O_3 + 6HCl$ \longrightarrow $2AlCl_3 + 3H_2O$ \longrightarrow $2Na[Al(OH)_4]$

Neutral oxides have neither acidic nor basic properties eg. CO, N_2O .

The elements of Group 16 form several oxides, which are listed in table 20, whilst the structures of some important ones are shown in Fig. 26

Table 20: Oxides of Group 16 Elements

Element	MO ₂	MO ₃	Other Oxides
S	SO_2	SO ₃	S _n O (n=2, 6 to 10)
Se	SeO_2	SeO ₃	
Те	TeO ₂	TeO ₃	Te O
Po	PoO ₂		Po O

Fig 26: The Structures of (a) SO_2 (gaseous) (b) SeO_2 (solid) (c) SO_3 (gaseous) (d) Trimer of SO_3 (solid)

The dioxides and trioxides of S and Se have been well characterized. Sulphur dioxide and selenium dioxide are acidic in nature whereas tellurium dioxide is amphoteric. This illustrates increase in basic character on descending a group. SO₂ contains sulphur in +4 oxidation state and may act as both reducing and oxidizing agent depending on the other reactant. The following reactions illustrate this.

The most important trioxide is SO_3 , which is used in the manufacture of H_2SO_4 . It is an acidic oxide and a powerful oxidizing agent and can oxidize HBr to Br_2 and P to P_4O_{10} .