Imaginary plane passing through the molecule which can bisect into two mirror image halves $H_2O: C_2 + 2\sigma$:

- (1) σ bisecting O and reflecting H¹ and H².
- (2) σ bisecting H¹-O-H².

AXIS:

2.

1 C_2 axis passing through O & interchange $\frac{H^1}{H^2}$:

NH₃:

 $C_3 + 3\sigma$ NH₃ has 3 planes.

Plane:

 σ bisecting N—H¹ reflecting $\frac{H^2}{H^3}$

bisecting N—H² reflecting $\frac{H^1}{H^3}$

bisecting N—H³ reflecting $\frac{H^1}{H^2}$

Axis:

 C_3 axis passing through N atom along with three planes.

Plane :

σ bisecting B-F¹

reflecting $\frac{F^2}{F^3}$

σ bisecting B-F²

reflecting $\frac{F'}{F^3}$

 $\sigma \ bisecting \ B - F^3$

reflecting $\frac{F^1}{F^2}$

σ bisecting all 4 atoms.

Axis: C₁ passing through B—F¹

interchanging $\frac{F^2}{F^3}$

 C_2 passing through B—F² interchanging $\frac{F^1}{F^3}$

 C_3 passing through B— F^3 interchanging $\frac{F^1}{F^2}$

 C_3 passing through B \perp to all C_2 axis or molecular plane.

BASIC DIFFERENCE BETWEEN C_2 AND PLANE: σ or plane does not change the face of reflecting atoms while C_2 changing the atoms along with its faces.

ves