Imaginary plane passing through the molecule which can bisect into two mirror image halves $H_2O: C_2 + 2\sigma$: - (1) σ bisecting O and reflecting H¹ and H². - (2) σ bisecting H¹-O-H². AXIS: 2. 1 C_2 axis passing through O & interchange $\frac{H^1}{H^2}$: NH₃: $C_3 + 3\sigma$ NH₃ has 3 planes. Plane: σ bisecting N—H¹ reflecting $\frac{H^2}{H^3}$ bisecting N—H² reflecting $\frac{H^1}{H^3}$ bisecting N—H³ reflecting $\frac{H^1}{H^2}$ Axis: C_3 axis passing through N atom along with three planes. Plane : σ bisecting B-F¹ reflecting $\frac{F^2}{F^3}$ σ bisecting B-F² reflecting $\frac{F'}{F^3}$ $\sigma \ bisecting \ B - F^3$ reflecting $\frac{F^1}{F^2}$ σ bisecting all 4 atoms. Axis: C₁ passing through B—F¹ interchanging $\frac{F^2}{F^3}$ C_2 passing through B—F² interchanging $\frac{F^1}{F^3}$ C_3 passing through B— F^3 interchanging $\frac{F^1}{F^2}$ C_3 passing through B \perp to all C_2 axis or molecular plane. BASIC DIFFERENCE BETWEEN C_2 AND PLANE: σ or plane does not change the face of reflecting atoms while C_2 changing the atoms along with its faces. ves