GROUP THEORY

- Element of symmetry
- Calculation of elements,
- Point groups
- Application of elements on axis x, y, z and matrix of each element.

5. Representation:

- Reducible
- 2. Irreducible
- 3. Derivation of character table.

6. Application:

- 1. Hybridisation: For mixing of orbital having same symmetry and having same energy.
- 2. IR/ Raman/ Microwave are also explained by group theory.

SYMMETRY:

Some tools for defining the symmetry like.

- 1. Symmetry Elements: There are 3 elements:
 - (i) axis of symmetry
 - (ii) Plane of symmetry
 - (iii) centre of symmetry

Axis of symmetry Rotation C_n operation

Plane of symmetry Reflection. σ operation.

Improper axis of symmetry Rotation - Reflection. S_n operation

Centre of Symmetry Inversion (i)

Identity Nothing to do for E

ELEMENT OF SYMMETRY:

Geometrical entity on the basis of that we can define the symmetry of an object is known as element of symmetry like, Axis, Plane, Point, etc.

OPERATION OF SYMMETRY ELEMENT:

Operation of symmetry element is the process which we apply on the element to define the symmetry.

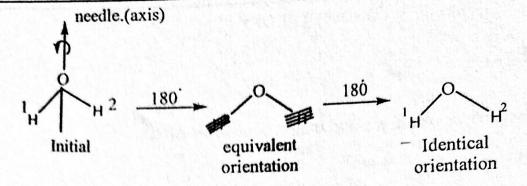
1. Axis of Symmetry:

Imaginary axis passing through the molecule rotation on which by θ^0 gives an equivalent orientation.

Orientation of Molecule: 3D distribution of atoms of the molecule is called orientation two type of orientation of molecule.

(i) Identical Orientation:

The orientation of initial molecule through the equivalent orientation by which we get the same or exact identical molecule representation.



(ii) Equivalent Orientation:

C, OPERATION :

$$n = \frac{360}{\theta} = \frac{360}{180} = 2$$
 Order of axis - C₂ axis

NUMBER OF OPERATION:

Number of operation to find the identical orientation (identity) . i.e. $\mathbf{H_2O}$:

$$H^{1}$$
 H^{2} C_{2}^{1} C_{2}^{1} C_{2}^{2} C_{2}^{2}

So the no. of operation = 1(because $c_2^2 = E$):

Example: NH₃:

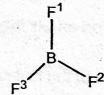
$$H^{3}$$
 H^{2}
 C_{3}^{1}
 H^{2}
 C_{3}^{1}
 C_{3}^{2}
 C_{3}^{3}
 C_{3

Order of axis =
$$\frac{360}{120}$$
 = 3 \rightarrow C₃ axis

Number of operation = 2 because C_3 is identity.

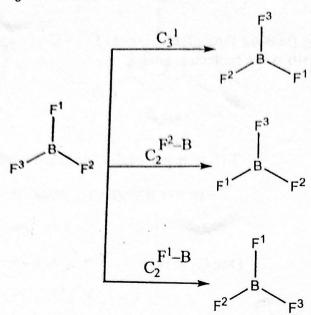
Example: BF₃: 3 C₂ axis and 1 C₃ axis.

3 C₂ axis:



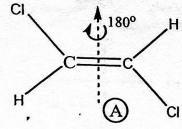
- 1. C₂ axis passing through F¹ B bond and interchanging F²/F³.
- 2. C₂ axis passing through F²-B bond and interchanging F¹/F³.
- 3. C₂ axis passing through F³-B bond interchanging F¹/F².

 ${
m 1C_3}$ AXIS: ${
m C_3}$ axis passing through B atom and \perp to each ${
m C_2}$ axis.

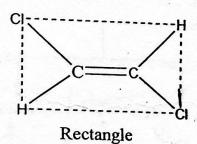


BF,CI:

BFCIBr:

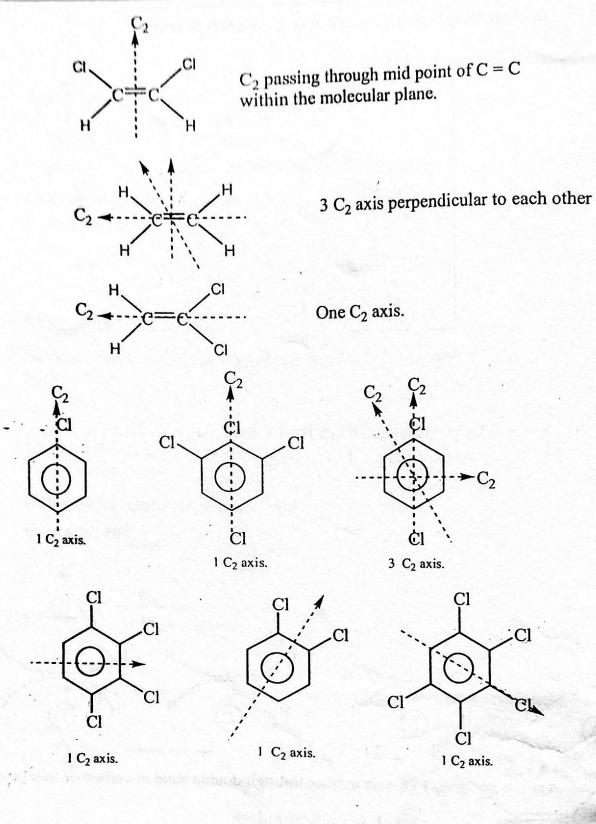


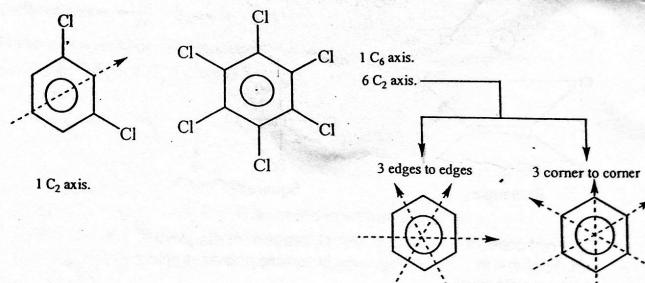
1 C_2 axis passing through double bond of carbon or mid point of C=C \perp to molecular plane



C₂ is not present at diagonal in rectangle structure.

C₂ present at diagonal in square planar structure





NUMBER OF SYMMETRY OPERATION:

$$C_2 \longrightarrow C_2^1 = 1$$

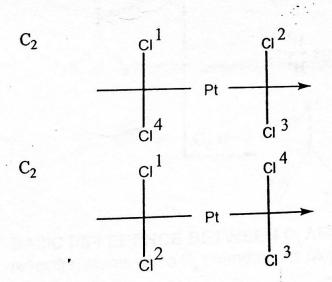
 $C_3 \longrightarrow C_3^1, C_3^2 = 2$

$$C_4 \longrightarrow C_4^{1}, C_4^{2}, C_4^{3} = 3$$

$$C_5 \longrightarrow C_5^1, C_5^2, C_5^3, C_5^4 = 4$$

D_{4h} Point Group:

$$\begin{array}{cccc} & \text{Cl}^{1} & \text{4 } C_2 \text{ axis.} \\ 4 & \text{l} & 2 & \text{Cl} & \text{C}_2 \text{ passing through } \text{Cl}^1 - \text{Pt} - \text{Cl}^3 \\ & \text{l} & \text{C}_2 \text{ passing through } \text{Cl}^2 - \text{Pt} - \text{Cl}^4 \\ & \text{K}_4 + 4\text{C}_2 & & & \end{array}$$



1C₄AXIS: C₄ passing through Pt ⊥ all C₂ axis

$$C_4^1$$
 C_4^2
 C_4^3
 C_2 axis

