GROUP THEORY - Element of symmetry - Calculation of elements, - Point groups - Application of elements on axis x, y, z and matrix of each element. ### 5. Representation: - Reducible - 2. Irreducible - 3. Derivation of character table. ## 6. Application: - 1. Hybridisation: For mixing of orbital having same symmetry and having same energy. - 2. IR/ Raman/ Microwave are also explained by group theory. #### SYMMETRY: Some tools for defining the symmetry like. - 1. Symmetry Elements: There are 3 elements: - (i) axis of symmetry - (ii) Plane of symmetry - (iii) centre of symmetry #### Axis of symmetry Rotation C_n operation Plane of symmetry Reflection. σ operation. Improper axis of symmetry Rotation - Reflection. S_n operation Centre of Symmetry Inversion (i) Identity Nothing to do for E #### **ELEMENT OF SYMMETRY:** Geometrical entity on the basis of that we can define the symmetry of an object is known as element of symmetry like, Axis, Plane, Point, etc. #### **OPERATION OF SYMMETRY ELEMENT:** Operation of symmetry element is the process which we apply on the element to define the symmetry. ## 1. Axis of Symmetry: Imaginary axis passing through the molecule rotation on which by θ^0 gives an equivalent orientation. **Orientation of Molecule:** 3D distribution of atoms of the molecule is called orientation two type of orientation of molecule. ### (i) Identical Orientation: The orientation of initial molecule through the equivalent orientation by which we get the same or exact identical molecule representation. ### (ii) Equivalent Orientation: ## C, OPERATION : $$n = \frac{360}{\theta} = \frac{360}{180} = 2$$ Order of axis - C₂ axis ### NUMBER OF OPERATION: Number of operation to find the identical orientation (identity) . i.e. $\mathbf{H_2O}$: $$H^{1}$$ H^{2} C_{2}^{1} C_{2}^{1} C_{2}^{2} So the no. of operation = 1(because $c_2^2 = E$): Example: NH₃: $$H^{3}$$ H^{2} C_{3}^{1} H^{2} C_{3}^{1} C_{3}^{2} C_{3}^{3} C_{3 Order of axis = $$\frac{360}{120}$$ = 3 \rightarrow C₃ axis Number of operation = 2 because C_3 is identity. Example: BF₃: 3 C₂ axis and 1 C₃ axis. 3 C₂ axis: - 1. C₂ axis passing through F¹ B bond and interchanging F²/F³. - 2. C₂ axis passing through F²-B bond and interchanging F¹/F³. - 3. C₂ axis passing through F³-B bond interchanging F¹/F². ${ m 1C_3}$ AXIS: ${ m C_3}$ axis passing through B atom and \perp to each ${ m C_2}$ axis. BF,CI: BFCIBr: 1 C_2 axis passing through double bond of carbon or mid point of C=C \perp to molecular plane C₂ is not present at diagonal in rectangle structure. C₂ present at diagonal in square planar structure ## NUMBER OF SYMMETRY OPERATION: $$C_2 \longrightarrow C_2^1 = 1$$ $C_3 \longrightarrow C_3^1, C_3^2 = 2$ $$C_4 \longrightarrow C_4^{1}, C_4^{2}, C_4^{3} = 3$$ $$C_5 \longrightarrow C_5^1, C_5^2, C_5^3, C_5^4 = 4$$ # D_{4h} Point Group: $$\begin{array}{cccc} & \text{Cl}^{1} & \text{4 } C_2 \text{ axis.} \\ 4 & \text{l} & 2 & \text{Cl} & \text{C}_2 \text{ passing through } \text{Cl}^1 - \text{Pt} - \text{Cl}^3 \\ & \text{l} & \text{C}_2 \text{ passing through } \text{Cl}^2 - \text{Pt} - \text{Cl}^4 \\ & \text{K}_4 + 4\text{C}_2 & & & \end{array}$$ 1C₄AXIS: C₄ passing through Pt ⊥ all C₂ axis $$C_4^1$$ C_4^2 C_4^3 C_2 axis