Kinetic Theory of Gases

$$
\text { Lecture - } 2
$$

Dr. Tarun Kumar Dey,

Associate professor

Department of Physics,
L.S College; BRA Bihar University, Muzzaffarpur

The Pressure of the gas in terms of energy :

$$
P=1 / 3 \rho C^{2}
$$

Or, $\quad P=2 / 3 \times 1 / 2 \rho C^{2}$
$E=1 / 2 \rho C^{2}$ is the kinetic energy of the molecules of unit volume.

$$
\begin{equation*}
P=2 / 3 E \tag{10}
\end{equation*}
$$

Kinetic interpretation of temperature :

$$
\begin{equation*}
P V=1 / 3 M C^{2} \tag{11}
\end{equation*}
$$

$$
\mathrm{RT}=1 / 3 \mathrm{MC}^{2}
$$

$C^{2}=3 R T / M$
Therefore, $\mathrm{C}^{2} \propto \mathrm{~T}$
Interpretation of gas laws :
(I) Perfect gas equation :

	$P V=1 / 3 M C^{2}$
Since,	$C^{2} \propto T$
Therefore,	$P V=R T$

Where R is a universal gas constant, eq.(14) is perfect gas equation.
(ii) Boyle's law :

Since, $\quad P V=1 / 3 M C^{2}$
And $C^{2} \propto T$
Therefore, PV = Constant .
$O r, P \propto 1 / V$, where T is constant
Which is Boyle's law .
(iii) Charle's law :

Since PV = RT
Hence, $\mathrm{V} \propto \mathrm{T}$
Where P is constant. which is Charle's law .
(iv) Law of pressure :

Since , $P=R T / V$
At a constant volume R / V is constant.
Therefore, $\mathrm{P} \propto \mathrm{T}$, which is a law of pressure.
(v) Graham's law of diffusion :

Since $P=1 / 3 \rho C^{2}$. If for the two gases pressure , density and velocity be respectively P_{1}, P_{2}, ρ_{1}, ρ_{2} and C_{1}, C_{2} Then,

$$
P_{1}=1 / 3 \rho_{1} C_{1}^{2} \text { and } P_{2}=1 / 3 \rho_{2} C_{2}^{2}
$$

At constant pressure ($\mathrm{P}_{1}=\mathrm{P}_{2}$)

$$
\begin{align*}
& 1 / 3 \rho_{1} \mathrm{C}_{1}^{2}=1 / 3 \rho_{2} \mathrm{C}_{2}^{2} \\
\therefore \quad & \mathrm{c}_{1} / \mathrm{c}_{2}=V \rho_{1} / \rho_{2} \tag{18}
\end{align*}
$$

(vi) Avagadro's hypothesis :

For two gases whose pressure and volume are same; then
$P=1 / 3 m_{1} n_{1} c_{1}{ }^{2} / V=1 / 3 m_{2} n_{2} c_{2}{ }^{2} / V$
Or, $\quad m_{1} n_{1} c_{1}{ }^{2}=m_{2} n_{2} c_{2}{ }^{2}$
If the temperature of the two gases are same then average energy of each molecule will be equal , that is

$$
\begin{equation*}
1 / 2 m_{1} c_{1}^{2}=1 / 2 m_{2} c_{2}^{2} \tag{20}
\end{equation*}
$$

Comparing Eq.(19) and (20) , we get

$$
\mathrm{n}_{1}=\mathrm{n}_{2}
$$

Hence at the same temperature and pressure the equal volume of different gases contains equal number of molecules. This is Avagadro's hypothesis .

(vii) Dalton's law of partial pressure :

Let there be a mixture of number of gases of densities $\rho_{1}, \rho_{2} \ldots$. And of mean square velocities $\mathrm{c}_{1}{ }^{2}, \mathrm{c}_{2}{ }^{2} \ldots$ in the same volume V , then the total pressure exerted by mixture is given by

$$
\begin{align*}
P & =1 / 3 \rho_{1} C_{1}{ }^{2}+1 / 3 \rho_{2} C_{2}{ }^{2}+\ldots . \\
& =P_{1}+P_{2}+\ldots . \tag{23}
\end{align*}
$$

Thus the pressure exerted by the mixture is equal to the sum of the pressure exerted separately by its components. This is Dalton's law of Partial pressure .

