Junction Diode

Lecture - 10

(10/06/2021)

B.Sc (Electronics) TDC PART - I Paper – 1 (Group – B) Unit – 5 by:

Dr. Niraj Kumar

Assistant Professor (Guest Faculty)

Department of Electronics

L. S. College, BRA Bihar University, Muzaffarpur.

Energy Band Structure of an Open-Circuited P-N Junction

- ⇒ Let us consider that a P-N Junction is formed by placing P type and N type materials in intimate contact on an atomic scale. Under such conditions the Fermi-Level must be constant through-out the specimen at equilibrium.
- ⇒ If this were not true, Electrons on one side of the junction would have an average energy higher than those on the other side and there would be a transfer of electrons and energy until the Fermi Level on the two sides equalize. In **Previous Lecture** – 40 and **Lecture** – 41 we have already learn and see that **Fermi Level** E_F is closer to the **Conduction Band edge** E_{CN} in the N – type material and closer to the **Valence Band edge** E_{VP} in the P – type material.

⇒ Obviously the Conduction Band edge E_{CP} in the P - type material cannot be at the same level as E_{CN} , nor can the Valence Band edge E_{VN} in the N – side line up with E_{Vp} . Thus on formation of a P-N Junction, Conduction Band edge E_{CP} in P – type material is higher than E_{CN} in N – type material and Valence Band edge E_{VP} in P – type material is higher than E_{VN} in N – type material. This is illustrated below in Figure (1), where a shift in energy level E_0 is shown.

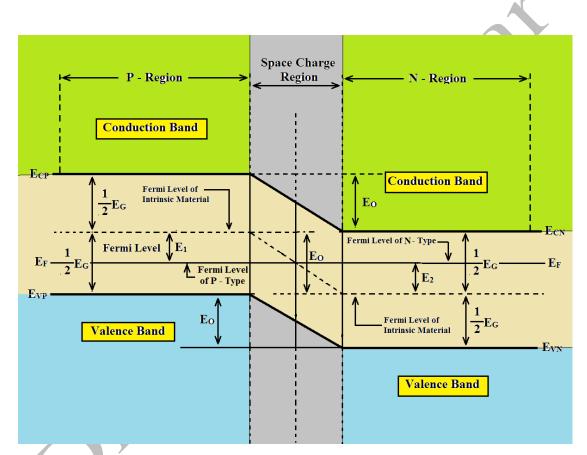


Fig. (1) Shown Energy Band Structure of an Open-Circuit P-N Junction.

 \Rightarrow The Total shift in the **Energy Level** E_0 is given as,

where, E_1 and E_2 represent the shifts in the Fermi Level from the Intrinsic Condition in P – type and N – type materials. $\Rightarrow \text{ The Energy } E_0 \text{ represents the Potential Energy of the Electrons at the Junction, as shown below in Figure (2) (e).}$

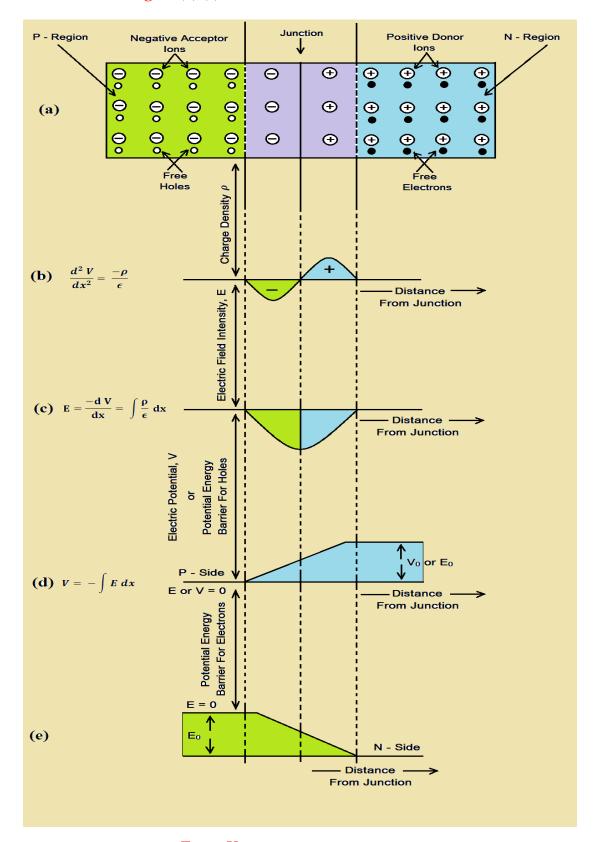


Fig. (2) Shown Energy E_0 or V_0 represents the potential Energy of the Electrons at the Junction.

 \Rightarrow Now, from **above Figure (1)**, we have,

 \Rightarrow Now adding above Equation (64) and Equation (65), we have,

$$E_{1} + E_{2} = E_{G} - (E_{CN} - E_{F}) - (E_{F} - E_{VP}) \qquad (66)$$

$$E_{0} = E_{C} - (E_{CN} - E_{F}) - (E_{F} - E_{VP}) \qquad (67)$$

- \Rightarrow We already known from **Previous Lecture** that,
- ⇒ In Intrinsic Semiconductor, Concentration of free Electrons n in Conduction Band may be expressed as,

and

⇒ In Intrinsic Semiconductor, Concentration of free Holes p in Valence Band may be expressed as,

where,

- + n_c is the number of Electrons in Conduction Band,
- + n_V is the number of Electrons in the Valence Band,
- + E_C is the lowest energy in the Conduction Band in eV,
- + E_V is the maximum energy of Valence Band in eV.

 \Rightarrow Now, from **Law of Mass Action**, then we already have,

$$n p = n_i^2 \qquad (70)$$

$$n_i^2 = n p$$

$$n_i^2 = n_c e^{-(E_c - E_F)/kT} \cdot n_V e^{-(E_F - E_V)/kT} \qquad (71)$$

$$n_i^2 = n_c n_V e^{-(E_c - E_F)/kT} \cdot e^{-(E_F - E_V)/kT} \qquad (72)$$

$$n_i^2 = n_c n_V e^{-[(E_c - E_F) + (E_F - E_V)]/kT} \qquad (73)$$

$$n_i^2 = n_c n_V e^{-E_c - E_F + E_F - E_V/kT} \qquad (74)$$

$$n_i^2 = n_c n_V e^{-(E_c - E_V)/kT} \qquad (75)$$

$$n_i^2 = n_c n_V e^{-E_c/kT} \qquad (76)$$

- $E_V = E_G, \text{ then we get,}$ \Rightarrow We already know from **Previous Lecture** that E_C $\therefore n_i^2 = n_C n_V e^{-E_G/kT}$
- Again finally we can write the above Equation (77) as ⇒

$$\therefore E_G = kT \log_e \frac{n_C n_V}{n_i^2} \quad \dots \qquad (78)$$

- Now again, we already know from **Previous Lecture** that, ⇔
- Exact position of the Fermi Level in an N type of Extrinsic Semiconductor is ⇒ give by,

$$E_{CN} - E_F = kT \log_e \frac{n_C}{N_D} \quad \dots \qquad (80)$$

- ⇒ Again, Exact position of the Fermi Level in an P type of Extrinsic Semiconductor is give by,

 - $E_F E_{VP} = kT \log_e \frac{n_V}{N_A} \quad \dots \qquad (82)$
- \Rightarrow Now substituting values of E_G , $(E_{CN} E_F)$ and $(E_F E_{VP})$ from

Equation (78), Equation (80) and Equation (82) in Equation (67), then we get,

$$E_o = kT \log_e \frac{n_C n_V}{n_i^2} - kT \log_e \frac{n_C}{N_D} - kT \log_e \frac{n_V}{N_A} \dots (83)$$

$$\therefore E_o = kT \log_e \frac{N_D N_A}{n_i^2} \quad \dots \qquad (85)$$

⇒ It is to be noted that in above Equations all E's are expressed in electron-volt and k has the dimensions of electron-volts per Kelvin. The contact difference of Potential Vo is expressed in volts and is numerically equal to Eo.

⇒ It is obvious from above Equation (84) that E₀ depends upon the equilibrium concentrations and not upon the charge density in transition region.

⇒ In the next Lecture - 11, we will discuss the detailed of the Metal Semiconductor Junctions.

to be continued
