WikipediA

Ethylene glycol

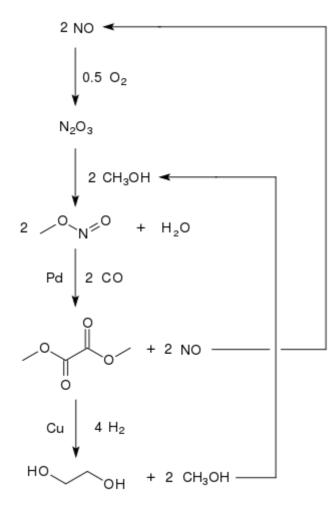
Ethylene glycol (<u>IUPAC name</u>: ethane-1,2-diol) is an <u>organic</u> <u>compound</u> with the formula $(CH_2OH)_2$. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for <u>antifreeze</u> formulations. It is an odorless, colorless, sweet-tasting, viscous liquid.

Contents
Production
Industrial routes
Biological routes
Historical routes
Uses
Coolant and heat-transfer agent
Antifreeze
Precursor to polymers
Other uses
Dehydrating agent
Hydrate inhibition
Applications
Chemical reactions
Toxicity
Environmental effects
Notes
References
External links

Production

Industrial routes

Ethylene glycol is produced from <u>ethylene</u> (ethene), via the intermediate <u>ethylene oxide</u>. Ethylene oxide reacts with <u>water</u> to produce ethylene glycol according to the <u>chemical equation</u>:


 $C_2H_4O + H_2O \rightarrow HO-CH_2CH_2-OH$

This <u>reaction</u> can be <u>catalyzed</u> by either <u>acids</u> or <u>bases</u>, or can occur at neutral <u>pH</u> under elevated temperatures. The highest yields of ethylene glycol occur at acidic or neutral pH with a large excess of water. Under these conditions, ethylene glycol yields of 90% can be achieved. The major byproducts are the <u>oligomers</u> <u>diethylene glycol</u>, <u>triethylene glycol</u>, and <u>tetraethylene glycol</u>. The separation of these oligomers and water is energy-intensive. About 6.7 million tonnes are produced annually.^[4]

A higher selectivity is achieved by use of <u>Shell's OMEGA process</u>. In the OMEGA process, the ethylene oxide is first converted with <u>carbon dioxide</u> (CO₂) to <u>ethylene carbonate</u>. This ring is then hydrolyzed with a base catalyst in a second step to produce monoethylene glycol in 98% selectivity.^[5] The carbon dioxide is released in this step again and can be fed back into the process circuit. The carbon dioxide comes in part from the ethylene oxide production, where a part of the ethylene is completely <u>oxidized</u>.

Ethylene glycol is produced from carbon monoxide in countries with large coal reserves and less stringent environmental regulations. The oxidative carbonylation of methanol to <u>dimethyl oxalate</u> provides a promising approach to the production of C₁-based ethylene glycol.^[6] Dimethyl oxalate can be converted into ethylene glycol in high yields (94.7%^[7]) by <u>hydrogenation</u> with a copper catalyst:^[8]

	image (https://ch emapps.stolaf.e du/jmol/jmol.ph p?model=OCC O)
3DMet	B00278 (http://w ww.3dmet.dna.af frc.go.jp/cgi/sho w_data.php?acc =B00278)
Abbreviations	MEG
Beilstein Reference	505945
ChEBI	CHEBI:30742 (ht tps://www.ebi.ac. uk/chebi/searchI d.do?chebiId=30 742)
<u>ChEMBL</u>	ChEMBL457299 (https://www.ebi. ac.uk/chembldb/i ndex.php/compo und/inspect/ChE MBL457299) ✓
ChemSpider	13835235 (htt p://www.chemspi der.com/Chemic al-Structure.138 35235.html) •
ECHA InfoCard	100.003.159 (htt ps://echa.europ a.eu/substance-i nformation/-/sub stanceinfo/100.0 03.159)
EC Number	203-473-3
Gmelin Reference	943
KEGG	C01380 (https:// www.kegg.jp/ent ry/C01380) *
MeSH	Ethylene+glycol (https://www.nl m.nih.gov/cgi/m esh/2014/MB_cg

Because the methanol is recycled, only carbon monoxide, hydrogen, and oxygen are consumed. One plant with a production capacity of 200 000 tons of ethylene glycol per year is in <u>Inner Mongolia</u>, and a second plant in the Chinese province of <u>Henan</u> with a capacity of 250 000 tons per year was scheduled for 2012.^[9] As of 2015, four plants in China with a capacity of 200 000 t/a each were operating with at least 17 more to follow.^[10]

Biological routes

The <u>caterpillar</u> of the Greater wax moth, <u>*Galleria mellonella*</u>, has <u>gut</u> <u>bacteria</u> with the ability to degrade <u>polyethylene</u> (PE) into ethylene <u>glycol.[11][12][13]</u>

Historical routes

According to most sources, French chemist <u>Charles-Adolphe Wurtz</u> (1817–1884) first prepared ethylene glycol in 1856.^[14] He first treated "ethylene iodide" ($C_2H_4I_2$) with silver acetate and then hydrolyzed the resultant "ethylene diacetate" with <u>potassium hydroxide</u>. Wurtz named his new compound "glycol" because it shared qualities with both <u>ethyl alcohol</u> (with one hydroxyl group) and <u>glycerin</u> (with three hydroxyl groups).^[15] In 1859, Wurtz prepared ethylene glycol via the <u>hydration</u> of <u>ethylene oxide</u>.^[16] There appears to have been no commercial manufacture or application of ethylene glycol prior to <u>World War I</u>, when it was synthesized from <u>ethylene dichloride</u> in Germany and used as a substitute for glycerol in the <u>explosives</u> industry.

In the United States, semicommercial production of ethylene glycol via <u>ethylene chlorohydrin</u> started in 1917. The first large-scale commercial glycol plant was erected in 1925 at <u>South Charleston</u>, <u>West Virginia</u>, by Carbide and Carbon Chemicals Co. (now <u>Union</u> <u>Carbide</u> Corp.). By 1929, ethylene glycol was being used by almost all <u>dynamite</u> manufacturers. In 1937, Carbide started up the first plant based on Lefort's process for vapor-phase oxidation of ethylene to ethylene oxide. Carbide maintained a monopoly on the direct oxidation process until 1953 when the Scientific Design process was commercialized and offered for licensing.

Uses

Ethylene

Coolant and heat-transfer agent

The major use of ethylene glycol is as an antifreeze agent in the <u>coolant</u> in for example, automobiles and <u>air-conditioning</u> systems that either place the chiller or air handlers outside or must cool below

	i?mode=&term= Ethylene+glycol)	
PubChem CID	174 (https://pubc hem.ncbi.nlm.ni h.gov/compoun d/174)	
RTECS number	KW2975000	
UNII	FC72KVT52F (h ttps://fdasis.nlm. nih.gov/srs/srsdi rect.jsp?regno= FC72KVT52F) ✓	
UN number	3082	
<u>CompTox</u> Dashboard (EPA)	DTXSID8020597 (https://comptox. epa.gov/dashbo ard/DTXSID802 0597)	
InChl		
InChI=1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2 🗸 Key: LYCAIKOWRPUZTN-UHFFFAOYSA-N 🗸		
InChI=1/C2H6O2/c3-1-2-4/h3-4H,1-2H2 Key: LYCAIKOWRPUZTN-UHFFFAOYAD		
SMILES		
0000		
Prope		
Prope Chemical formula	C ₂ H ₆ O ₂	
Prope	$C_2H_6O_2$ 62.068 g·mol ⁻¹	
Prope Chemical formula	C ₂ H ₆ O ₂	
Prope Chemical formula Molar mass	$C_2H_6O_2$ 62.068 g·mol ⁻¹ Clear, colorless	
Prope Chemical formula Molar mass Appearance	$C_2H_6O_2$ 62.068 g·mol ⁻¹ Clear, colorless liquid	
Prope Chemical formula Molar mass Appearance Odor	$\begin{array}{c} C_2H_6O_2\\ 62.068 \ g\cdot mol^{-1}\\ Clear, \ colorless\\ liquid\\ Odorless^{[1]} \end{array}$	
Prope Chemical formula Molar mass Appearance Odor Density	$C_2H_6O_2$ 62.068 g·mol ⁻¹ Clear, colorless liquid Odorless ^[1] 1.1132 g/cm ³ -12.9 °C	
Prope Chemical formula Molar mass Appearance Odor Density Melting point	C ₂ H ₆ O ₂ 62.068 g·mol ⁻¹ Clear, colorless liquid Odorless ^[1] 1.1132 g/cm ³ -12.9 °C (8.8 °F; 260.2 K) 197.3 °C (387.1 °F;	
Prope Chemical formula Molar mass Appearance Odor Density Melting point Boiling point	C ₂ H ₆ O ₂ 62.068 g·mol ⁻¹ Clear, colorless liquid Odorless ^[1] 1.1132 g/cm ³ -12.9 °C (8.8 °F; 260.2 K) 197.3 °C (387.1 °F; 470.4 K)	
Prope Chemical formula Molar mass Appearance Odor Density Melting point Boiling point Solubility in water	$C_2H_6O_2$ $62.068 \text{ g} \cdot \text{mol}^{-1}$ Clear, colorless liquid Odorless ^[1] 1.1132 g/cm ³ -12.9 °C (8.8 °F; 260.2 K) 197.3 °C (387.1 °F; 470.4 K) Miscible Soluble in most	

the freezing temperature of water. In geothermal heating/cooling systems, ethylene glycol is the <u>fluid</u> that transports heat through the use of a geothermal heat pump. The ethylene glycol either gains energy from the source (lake, ocean, <u>water well</u>) or dissipates heat to the sink, depending on whether the system is being used for heating or cooling.

Pure ethylene glycol has a specific heat capacity about one half that of water. So, while providing freeze protection and an increased boiling point, ethylene glycol lowers the specific heat capacity of water mixtures relative to pure water. A 1:1 mix by mass has a specific heat capacity of about 3140 J/(kg·°C) (0.75 BTU/(lb·°F)), three quarters that of pure water, thus requiring increased flow rates in same-system comparisons with water. The formation of large bubbles in cooling passages of internal combustion engines will severely inhibit heat flow (flux) from the area, so that allowing nucleation (tiny bubbles) to occur is not advisable. Large bubbles in cooling passages will be self-sustaining or grow larger, with a virtually complete loss of cooling in the area. With pure MEG (mono-ethylene glycol) the hot spot will reach 200 °C (392 °F). Cooling by other effects such as air draft from fans (not considered in pure nucleation analysis) will assist in preventing large-bubble formation.

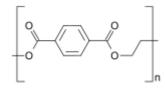
The mixture of ethylene glycol with water provides additional benefits to coolant and antifreeze solutions, such as preventing corrosion and acid degradation, as well as inhibiting the growth of most microbes and fungi.^[17]

Antifreeze

Pure ethylene glycol freezes at about -12 °C (10.4 °F) but, when mixed with water, the mixture freezes at a lower temperature. For example, a mixture of 60% ethylene glycol and 40% water freezes at -45 °C (-49 °F).^[4] <u>Diethylene glycol</u> behaves similarly. The freezing point depression of some mixtures can be explained as a <u>colligative property</u> of solutions but, in highly concentrated mixtures such as the example, deviations from ideal solution behavior are expected due to the influence of intermolecular forces.

There is a difference in the mixing ratio, depending on whether it is ethylene glycol or propylene glycol. For ethylene glycol, the mixing ratios are typically 30/70 and 35/65, whereas the propylene glycol mixing ratios are typically 35/65 and 40/60. It is important that the mixture is frost-proof at the lowest operating temperature.^[18]

Because of the depressed freezing temperatures, ethylene glycol is used as a <u>de-icing</u> fluid for <u>windshields</u> and aircraft, as an <u>antifreeze</u> in automobile engines, and as a component of <u>vitrification</u> (anticrystallization) mixtures for low-temperature preservation of biological tissues and organs. Mixture of ethylene glycol and water can also be chemically termed as glycol


	(20 °C) ^[1]	
Viscosity	1.61 × 10 ⁻²	
	Pa·s ^[3]	
Hazards		
Main <u>hazards</u>	Harmful	
Safety data sheet	See: data page	
	External MSDS	
	(http://hazard.co	
	m/msds/mf/bake	
	r/baker/files/e51	
	<u>25.htm)</u>	
GHS pictograms		
GHS Signal word	Warning	
GHS hazard statements	<u>H302, H373</u>	
GHS	<u>P260, P264,</u>	
precautionary statements	<u>P270,</u>	
statements	<u>P301+312,</u>	
	<u>P314, P330,</u>	
	<u>P501</u>	
NFPA 704		
(fire diamond)	20	
Flash point	111 °C (232 °F;	
	384 K)	
	closed cup	
Autoionition		
Autoignition	410 °C (770 °F;	
temperature	410 °C (770 °F; 683 K)	
temperature	683 K) 3.2–15.2% ^[1]	
temperature Explosive limits	683 K) 3.2–15.2% ^[1]	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL	683 K) 3.2–15.2% ^[1] exposure limits):	
temperature Explosive limits NIOSH (US health of PEL (Permissible)	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1]	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL (Recommended) IDLH (Immediate	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None established ^[1] None ^[1]	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL (Recommended) IDLH (Immediate danger)	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None established ^[1] None ^[1]	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL (Recommended) IDLH (Immediate danger) Related co	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None established ^[1] None ^[1]	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL (Recommended) IDLH (Immediate danger) Related co	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None established ^[1] None ^[1] None ^[1] Propylene glycol	
temperature Explosive limits NIOSH (US health of PEL (Permissible) REL (Recommended) IDLH (Immediate danger) Related co	683 K) 3.2–15.2% ^[1] exposure limits): None ^[1] None established ^[1] None ^[1] mpounds Propylene glycol Diethylene glycol	

concentrate/compound/mixture/solution.

The use of ethylene glycol not only depresses the freezing point of aqueous mixtures, but also elevates their boiling point. This results in the operating temperature range for heat-transfer fluids being broadened on both ends of the temperature scale. The increase in boiling temperature is due to pure ethylene glycol having a much higher boiling point and lower vapor pressure than pure water, as is typical with most binary mixtures of volatile liquids.

Precursor to polymers

In the <u>plastic industry</u>, ethylene glycol is an important precursor to <u>polyester</u> fibers and <u>resins</u>. <u>Polyethylene terephthalate</u>, used to make plastic bottles for soft drinks, is prepared from ethylene glycol.

Ethylene glycol is one precursor to <u>polyethyleneterephthalate</u>, which is produced on the multimillion ton scale annually.

Other uses

Dehydrating agent

	Polyethylene	
	glycol	
Supplementary data page		
Structure and properties	$\frac{\text{Refractive index}}{(n),}$ $\frac{\text{Dielectric}}{\text{constant}} (\epsilon_r),$ etc.	
Thermodynamic data	Phase behaviour solid–liquid–gas	
Spectral data	<u>UV,</u> <u>IR</u> , <u>NMR,</u> <u>MS</u>	
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).		
🗶 verify (what is 🚧 ?)		
Infobox references		

Ethylene glycol is used in the natural gas industry to remove water vapor from natural gas before further processing, in much the same manner as <u>triethylene</u> glycol (TEG).

Hydrate inhibition

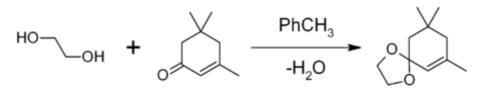
Because of its high boiling point and affinity for water, ethylene glycol is a useful <u>desiccant</u>. Ethylene glycol is widely used to inhibit the formation of <u>natural gas clathrates</u> (hydrates) in long multiphase pipelines that convey natural gas from remote gas fields to a gas processing facility. Ethylene glycol can be recovered from the natural gas and reused as an inhibitor after purification treatment that removes water and inorganic salts.

Natural gas is dehydrated by ethylene glycol. In this application, ethylene glycol flows down from the top of a tower and meets a rising mixture of water vapor and <u>hydrocarbon</u> gases. Dry gas exits from the top of the tower. The glycol and water are separated, and the glycol recycled. Instead of removing water, ethylene glycol can also be used to depress the temperature at which <u>hydrates</u> are formed. The purity of glycol used for hydrate suppression (monoethylene glycol) is typically around 80%, whereas the purity of glycol used for dehydration (triethylene glycol) is typically 95 to more than 99%. Moreover, the injection rate for hydrate suppression is much lower than the circulation rate in a glycol dehydration tower.

Applications

Minor uses of ethylene glycol include the manufacture of capacitors, as a chemical intermediate in the manufacture of <u>1,4-dioxane</u>, as an additive to prevent <u>corrosion</u> in liquid cooling systems for <u>personal</u> <u>computers</u>, and inside the lens devices of cathode-ray tube type of rear projection televisions. Ethylene glycol is also used in the manufacture of some <u>vaccines</u>, but it is not itself present in these injections. It is used as a minor (1–2%) ingredient in <u>shoe polish</u> and also in some inks and dyes. Ethylene glycol has seen some use as a rot and fungal treatment for wood, both as a preventative and a treatment after the fact. It has been used in a few cases to treat partially rotted wooden objects to be displayed in museums. It is one of only a few

treatments that are successful in dealing with rot in wooden boats, and is relatively cheap. Ethylene glycol may also be one of the minor ingredients in screen cleaning solutions, along with the main ingredient <u>isopropyl</u> <u>alcohol</u>. Ethylene glycol is commonly used as a <u>preservative</u> for biological specimens, especially in secondary schools during <u>dissection</u> as a safer alternative to <u>formaldehyde</u>. It is also used as part of the water-based hydraulic fluid used to control subsea oil and gas production equipment.


Ethylene glycol is used as a protecting group in organic synthesis to protect carbonyl compounds such as ketones and aldehydes.^[19]

Silicon dioxide reacts in heated <u>reflux</u> under <u>dinitrogen</u> with ethylene glycol and an <u>alkali metal</u> base to produce highly reactive, <u>pentacoordinate</u> silicates which provide access to a wide variety of new silicon compounds.^[20] The silicates are essentially insoluble in all polar solvent except methanol.

It also can be used in vaccine manufacture or as a formaldehyde substitute when preserving biological specimens.^[21]

Chemical reactions

Ethylene glycol is used as a protecting group for <u>carbonyl groups</u> in <u>organic synthesis</u>. Treating a ketone or aldehyde with ethylene glycol in the presence of an acid catalyst (e.g., <u>p-toluenesulfonic acid</u>; <u>BF₃·Et₂O</u>) gives the corresponding a 1,3-<u>dioxolane</u>, which is resistant to bases and other nucleophiles. The 1,3-dioxolane protecting group can thereafter be removed by further acid <u>hydrolysis</u>.^[22] In this example, <u>isophorone</u> was protected using ethylene glycol with p-toluenesulfonic acid in moderate yield. Water was removed by azeotropic distillation to shift the equilibrium to the right.^[23]

Toxicity

Ethylene glycol is moderately toxic, with an oral $\underline{LD}_{Lo} = 786 \text{ mg/kg}$ for humans.^[24] The major danger is due to its sweet taste, which can attract children and animals. Upon ingestion, ethylene glycol is oxidized to glycolic acid, which is, in turn, oxidized to <u>oxalic acid</u>, which is toxic. It and its toxic byproducts first affect the <u>central nervous system</u>, then the heart, and finally the kidneys. Ingestion of sufficient amounts is fatal if untreated.^[25] Several deaths are recorded annually in the U.S. alone.^[26]

Antifreeze products for automotive use containing <u>propylene glycol</u> in place of ethylene glycol are available. They are generally considered safer to use, as propylene glycol isn't as palatable^[note 1] and is converted in the body to lactic acid, a normal product of metabolism and exercise.^[29]

Australia, the UK, and seventeen US states (as of 2012) require the addition of a bitter flavoring (denatonium benzoate) to antifreeze. In December 2012, US antifreeze manufacturers agreed voluntarily to add a bitter flavoring to all antifreeze that is sold in the consumer market of the US.^[30]

Environmental effects

Ethylene glycol is a high-production-volume chemical; it breaks down in air in about 10 days and in water or soil in a few weeks. It enters the environment through the dispersal of ethylene glycol-containing products, especially at airports, where it is used in <u>deicing</u> agents for runways and airplanes.^[31] While prolonged low doses of ethylene glycol show no toxicity, at near lethal doses (\geq 1000 mg/kg per day) ethylene glycol acts as a <u>teratogen</u>. "Based on a rather extensive database, it induces skeletal variations and malformations in rats and mice by all routes of exposure."^[32] This molecule has been observed in outer space.^[33]

Notes

 Pure propylene glycol does not taste bitter, and pure propylene glycol is often used as a food additive, for instance in cake icing and shelf-stable whipped cream. Industrial-grade propylene glycol usually has a slightly bitter or acrid taste due to impurities. See the article on propylene glycol for more information. The relative sweetness of ethylene glycol^[27] and propylene glycol^[28] is discussed in the Merck Index, and neither compound is described as bitter.

References

- 1. NIOSH Pocket Guide to Chemical Hazards. <u>"#0272" (https://www.cdc.gov/niosh/npg/npgd027</u> 2.html). <u>National Institute for Occupational Safety and Health</u> (NIOSH).
- 2. "Ethylene glycol" (https://www.chemsrc.com/en/cas/107-21-1_329621.html). www.chemsrc.com.
- 3. Elert, Glenn. "Viscosity" (http://physics.info/viscosity/). The Physics Hypertextbook. Retrieved 2007-10-02.
- 4. Siegfried Rebsdat; Dieter Mayer. "Ethylene Glycol". <u>Ullmann's Encyclopedia of Industrial</u> <u>Chemistry</u>. Weinheim: Wiley-VCH. <u>doi:10.1002/14356007.a10_101 (https://doi.org/10.1002%2</u> F14356007.a10_101).
- 5. Scott D. Barnicki "Synthetic Organic Chemicals" in Handbook of Industrial Chemistry and Biotechnology edited by James A. Kent, New York : Springer, 2012. 12th ed. <u>ISBN</u> 978-1-4614-4259-2.
- <u>983 EP 046 983 (https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=EP046)</u>, S. Tahara et al., "Process for continuously preparing ethylene glycol", assigned to Ube Industries and H. T. Teunissen and C. J. Elsevier, *Ruthenium catalyzed hydrogenation of dimethyl oxalate to ethylene glycol*, J. Chem. Soc., Chem. Commun., 1997, 667–668), <u>DOI:10.1039/A700862G</u>.
- S. Zhang et al., Highly-Dispersed Copper-Based Catalysts from Cu–Zn–Al Layered Double Hydroxide Precursor for Gas-Phase Hydrogenation of Dimethyl Oxalate to Ethylene Glycol, Catalysis Letters, Sept. 2012, 142 (9), 1121–1127, DOI:10.1007/s10562-012-0871-8.
- 9. "China's coal-based chemicals are a trade-off" (http://www.icis.com/resources/news/2012/01/3 0/9527520/china-s-coal-based-chemicals-are-a-trade-off/.).
- 10. Gräbner, Martin (2014-11-24). Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal (https://books.google.com/books?id=EPCeBgAAQBAJ&q=meg+china+synthesi s+gas&pg=PA15). ISBN 9783527336906.
- Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei (2014-12-02). "Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms". *Environmental Science & Technology*. 48 (23): 13776–13784. <u>Bibcode:2014EnST...4813776Y</u> (https://ui.adsabs.harvard.edu/abs/2014EnST...4813776Y). doi:10.1021/es504038a (https://doi. org/10.1021%2Fes504038a). <u>ISSN 1520-5851</u> (https://www.worldcat.org/issn/1520-5851). PMID 25384056 (https://pubmed.ncbi.nlm.nih.gov/25384056).

- Bombelli, Paolo; Howe, Christopher J.; Bertocchini, Federica (2017-04-24). "Polyethylene biodegradation by caterpillars of the wax moth Galleria mellonella" (http://www.cell.com/current-bi ology/fulltext/S0960-9822(17)30231-2). Current Biology. 27 (8): R292–R293. doi:10.1016/j.cub.2017.02.060 (https://doi.org/10.1016%2Fj.cub.2017.02.060). hdl:10261/164618 (https://hdl.handle.net/10261%2F164618). ISSN 0960-9822 (https://www.wo rldcat.org/issn/0960-9822). PMID 28441558 (https://pubmed.ncbi.nlm.nih.gov/28441558).
- 13. Khan, Amina (April 24, 2017). <u>"Stubborn plastic may have finally met its match: the hungry wax</u> worm" (http://www.latimes.com/science/sciencenow/la-sci-sn-worm-eats-plastic-20170424-stor y.html). Los Angeles Times. Retrieved April 25, 2017.
- 14. Adolphe Wurtz (1856). "Sur le glycol ou alcool diatomique" (http://gallica.bnf.fr/ark:/12148/bpt6k 3000k/f203.image) [On glycol or dibasic alcohol]. *Comptes Rendus*. **43**: 199–204.
- 15. Wurtz (1856), page 200: "... je propose de le nommer glycol, parce qu'il se rapproche à la fois, par ses propriétés, de l'alcool proprement dit et de la glycérin, entre lesquels il se trouve placé." (... I propose to call it glycol because, by its properties, it is simultaneously close to [ethyl] alcohol properly called and glycerin, between which it is placed.)
- 16. Ad. Wurtz (1859) "Synthèse du glycol avec l'oxyde d'éthylène et l'eau" (http://gallica.bnf.fr/ark:/1 2148/bpt6k3006f/f815.item.r=.zoom) (Synthesis of glycol from ethylene oxide and water), *Comptes rendus*, **49** : 813–815.
- 17. "Hydratech Specialist Fluid Solutions" (http://www.hydratechglobal.net/technical/Ethylene+Gl ycol/58/en). www.hydratechglobal.net.
- 18. <u>"Glycol til industri og erhverv" (https://lcglad.dk/glycol/)</u> [Glycol for industry and business]. *LC Glad* (in Danish) – via lcglad.dk.
- 19. "Ethylene glycol acetal" (http://www.synarchive.com/protecting-group/Aldehyde_Ketone_Ethyle ne_glycol_acetal). The Organic Synthesis Archive. synarchive.com.
- Laine, Richard M.; Blohowiak, Kay Youngdahl; Robinson, Timothy R.; Hoppe, Martin L.; Nardi, Paola; Kampf, Jeffrey; Uhm, Jackie (17 October 1991). "Synthesis of pentacoordinate silicon complexes from SiO₂" (https://deepblue.lib.umich.edu/bitstream/2027.42/62810/1/353642a0.pd f) (PDF). *Nature*. **353** (6345): 642–644. <u>Bibcode:1991Natur.353..642L</u> (https://ui.adsabs.harvar d.edu/abs/1991Natur.353..642L). doi:10.1038/353642a0 (https://doi.org/10.1038%2F353642a O). hdl:2027.42/62810 (https://hdl.handle.net/2027.42%2F62810). <u>S2CID</u> 4310228 (https://api.s emanticscholar.org/CorpusID:4310228).
- 21. "Monoethylene Glycol" (https://berrymanchemical.com/blog/product-spotlight-monoethylene-gly col/). Berryman Chemical. 2020-07-20. Retrieved 2020-08-05.
- 22. Theodora W. Greene; Peter G. M. Wuts (1999). *Protective Groups in Organic Synthesis* (Third ed.). John Wiley & Sons. pp. 312–322. ISBN 978-0-471-16019-9.
- 23. J. H. Babler; N. C. Malek; M. J. Coghlan (1978). "Selective hydrolysis of α,β- and β,γunsaturated ketals: method for deconjugation of β,β-disubstituted α,β-unsaturated ketones". J. Org. Chem. 43 (9): 1821–1823. doi:10.1021/jo00403a047 (https://doi.org/10.1021%2Fjo00403a 047).
- 24. Safety Officer in Physical Chemistry (November 23, 2009). "Safety (MSDS) data for ethylene glycol" (http://msds.chem.ox.ac.uk/ET/ethylene_glycol.html). Oxford University. Retrieved December 30, 2009.
- 25. Ethylene glycol (https://www.cdc.gov/niosh/ershdb/EmergencyResponseCard_29750031.html). National Institute for Occupational Safety and Health. Emergency Response Database. August 22, 2008. Retrieved December 31, 2008.
- 26. Ethylene Glycol Toxicity (https://emedicine.medscape.com/article/814701-overview) at eMedicine
- 27. The Merck Index (15th ed.). Royal Society of Chemistry. 2013. pp. M5122.
- 28. The Merck Index (15th ed.). Royal Society of Chemistry. 2013. pp. M9238.
- 29. Pieter Klapwijk (January 27, 2010). "Ethylene Glycol Poisoning" (http://www.resteddoginn.ca/a ntifreeze.php). The Rested Dog Inn. Retrieved October 11, 2012.

- 30. "Antifreeze and Engine Coolant Being Bittered Nationwide" (https://web.archive.org/web/20121 228225407/http://www.cspa.org/news-media-center/news-releases/2012/12/antifreeze-and-eng ine-coolant-being-bittered-nationwide). Consumer Specialty Products Association. 13 December 2012. Archived from the original (http://www.cspa.org/category/news-releases/2012/ 12/antifreeze-and-engine-coolant-being-bittered-nationwide/) on 28 December 2012. Retrieved 30 June 2016.
- 31. (CDC ToxFAQs) (http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=85&tid=21).
- 32. "Statement of the Science Report for Ethylene Glycol" (http://www.hc-sc.gc.ca/ewh-semt/pubs/c ontaminants/psl2-lsp2/ethylene_glycol/index-eng.php#a2436). 3.3.2.2 Non-neoplastic effects. Health Canada www.hc-sc.gc.ca. June 24, 2013. Retrieved 27 August 2014.
- 33. J. M. Hollis; F. J. Lovas; P. R. Jewell; L. H. Coudert (2002-05-20). "Interstellar Antifreeze: Ethylene Glycol" (https://doi.org/10.1086%2F341148). *The Astrophysical Journal*. **571** (1): L59– L62. Bibcode:2002ApJ...571L..59H (https://ui.adsabs.harvard.edu/abs/2002ApJ...571L..59H). doi:10.1086/341148 (https://doi.org/10.1086%2F341148).

External links

- WebBook page for C2H6O2 (http://webbook.nist.gov/cgi/cbook.cgi?ID=C107211)
- ATSDR Case Studies in Environmental Medicine: Ethylene Glycol and Propylene Glycol Toxicity (http://www.atsdr.cdc.gov/csem/egpg/index.html)
- CDC NIOSH Pocket Guide to Chemical Hazards (https://www.cdc.gov/niosh/npg/npgd0272.ht ml)
- Antifreeze ratio for Ethylene Glycol and Propylene Glycol (https://lcglad.dk/glycol/)
- Medical information (http://www.emedicine.com/emerg/topic177.htm)
- Hairong Yue; Yujun Zhao; Xinbin Ma; Jinlong Gong (2012). "Ethylene glycol: properties, synthesis, and applications". *Chemical Society Reviews*. **41** (11): 4218–4244. doi:10.1039/C2CS15359A (https://doi.org/10.1039%2FC2CS15359A). PMID 22488259 (https://pubmed.ncbi.nlm.nih.gov/22488259).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Ethylene_glycol&oldid=1017941440"

This page was last edited on 15 April 2021, at 13:06 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.