
Electrophile
In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an
electron pair.[1] Because electrophiles accept electrons, they are Lewis acids.[2] Most electrophiles are
positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an
octet of electrons.

Electrophiles mainly interact with nucleophiles through addition and substitution reactions. Frequently seen
electrophiles in organic syntheses include cations such as H+ and NO+, polarized neutral molecules such as
HCl, alkyl halides, acyl halides, and carbonyl compounds, polarizable neutral molecules such as Cl2 and Br2,
oxidizing agents such as organic peracids, chemical species that do not satisfy the octet rule such as carbenes
and radicals, and some Lewis acids such as BH3 and DIBAL.
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These occur between alkenes and electrophiles, often halogens as in halogen addition reactions. Common
reactions include use of bromine water to titrate against a sample to deduce the number of double bonds
present. For example, ethene + bromine → 1,2-dibromoethane:

C2H4 + Br2 → BrCH2CH2Br

This takes the form of 3 main steps shown below;[3]
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1. Forming of a π-complex

The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-
complex 1.

2. Forming of a three-membered bromonium ion

The alkene is working as an electron donor and bromine as an electrophile. The three-
membered bromonium ion 2 consisted of two carbon atoms and a bromine atom forms
with a release of Br−.

3. Attacking of bromide ion

The bromonium ion is opened by the attack of Br− from the back side. This yields the
vicinal dibromide with an antiperiplanar configuration. When other nucleophiles such as
water or alcohol are existing, these may attack 2 to give an alcohol or an ether.

This process is called AdE2 mechanism ("addition, electrophilic, second-order"). Iodine (I2), chlorine (Cl2),
sulfenyl ion (RS+), mercury cation (Hg2+), and dichlorocarbene (:CCl2) also react through similar pathways.
The direct conversion of 1 to 3 will appear when the Br− is large excess in the reaction medium. A β-bromo
carbenium ion intermediate may be predominant instead of 3 if the alkene has a cation-stabilizing substituent
like phenyl group. There is an example of the isolation of the bromonium ion 2.[4]

Hydrogen halides such as hydrogen chloride (HCl) adds to alkenes to give alkyl halides in hydrohalogenation.
For example, the reaction of HCl with ethylene furnishes chloroethane. The reaction proceeds with a cation
intermediate, being different from the above halogen addition. An example is shown below:

1. Proton (H+) adds (by working as an electrophile) to one of the carbon atoms on the alkene to
form cation 1.

2. Chloride ion (Cl−) combines with the cation 1 to form the adducts 2 and 3.

In this manner, the stereoselectivity of the product, that is, from which side Cl− will attack relies on the types of
alkenes applied and conditions of the reaction. At least, which of the two carbon atoms will be attacked by H+

is usually decided by Markovnikov's rule. Thus, H+ attacks the carbon atom that carries fewer substituents so
as the more stabilized carbocation (with the more stabilizing substituents) will form.

This is another example of an AdE2 mechanism.[5] Hydrogen fluoride (HF) and hydrogen iodide (HI) react
with alkenes in a similar manner, and Markovnikov-type products will be given. Hydrogen bromide (HBr)
also takes this pathway, but sometimes a radical process competes and a mixture of isomers may form.
Although introductory textbooks seldom mentions this alternative,[6] the AdE2 mechanism is generally
competitive with the AdE3 mechanism (described in more detail for alkynes, below), in which transfer of the
proton and nucleophilic addition occur in a concerted manner. The extent to which each pathway contributes
depends on the several factors like the nature of the solvent (e.g., polarity), nucleophilicity of the halide ion,
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stability of the carbocation, and steric effects. As brief examples, the formation of a sterically unencumbered,
stabilized carbocation favors the AdE2 pathway, while a more nucleophilic bromide ion favors the AdE3
pathway to a greater extent compared to reactions involving the chloride ion.[7]

In the case of dialkyl-substituted alkynes (e.g., 3-hexyne), the intermediate vinyl cation that would result from
this process is highly unstable. In such cases, the simultaneous protonation (by HCl) and attack of the alkyne
by the nucleophile (Cl−) is believed to take place. This mechanistic pathway is known by the Ingold label
AdE3 ("addition, electrophilic, third-order"). Because the simultaneous collision of three chemical species in a
reactive orientation is improbable, the termolecular transition state is believed to be reached when the
nucleophile attacks a reversibly-formed weak association of the alkyne and HCl. Such a mechanism is
consistent with the predominantly anti addition (>15:1 anti:syn for the example shown) of the
hydrochlorination product and the termolecular rate law, Rate = k[alkyne][HCl]2.[8][9] In support of the
proposed alkyne-HCl association, a T-shaped complex of an alkyne and HCl has been characterized
crystallographically.[10]

In contrast, phenylpropyne reacts by the AdE2ip ("addition, electrophilic, second-order, ion pair") mechanism
to give predominantly the syn product (~10:1 syn:anti). In this case, the intermediate vinyl cation is formed by
addition of HCl because it is resonance-stabilized by the phenyl group. Nevertheless, the lifetime of this high
energy species is short, and the resulting vinyl cation-chloride anion ion pair immediately collapses, before the
chloride ion has a chance to leave the solvent shell, to give the vinyl chloride. The proximity of the anion to
the side of the vinyl cation where the proton was added is used to rationalize the observed predominance of
syn addition.[7]

One of the more complex hydration reactions utilises sulfuric acid as a catalyst. This reaction occurs in a
similar way to the addition reaction but has an extra step in which the OSO3H group is replaced by an OH
group, forming an alcohol:

C2H4 + H2O → C2H5OH

As can be seen, the H2SO4 does take part in the overall reaction, however it remains unchanged so is
classified as a catalyst.

This is the reaction in more detail:
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Use of a chiral oxaziridine for asymmetric synthesis.

1. The H–OSO3H molecule has a δ+ charge on the initial H atom. This is attracted to and reacts
with the double bond in the same way as before.

2. The remaining (negatively charged) −OSO3H ion then attaches to the carbocation, forming
ethyl hydrogensulphate (upper way on the above scheme).

3. When water (H2O) is added and the mixture heated, ethanol (C2H5OH) is produced. The
"spare" hydrogen atom from the water goes into "replacing" the "lost" hydrogen and, thus,
reproduces sulfuric acid. Another pathway in which water molecule combines directly to the
intermediate carbocation (lower way) is also possible. This pathway become predominant
when aqueous sulfuric acid is used.

Overall, this process adds a molecule of water to a molecule of ethene.

This is an important reaction in industry, as it produces ethanol, whose purposes include fuels and starting
material for other chemicals.

Many electrophiles are chiral and optically stable. Typically chiral electrophiles are also optically pure.

One such reagent is the fructose-derived organocatalyst used in the Shi epoxidation.[11] The catalyst can
accomplish highly enantioselective epoxidations of trans-disubstituted and trisubstituted alkenes. The Shi
catalyst, a ketone, is oxidized by stoichiometric oxone to the active dioxirane form before proceeding in the
catalytic cycle.

Oxaziridines such as chiral N-sulfonyloxaziridines
effect enantioselective ketone alpha oxidation en
route to the AB-ring segments of various natural
products, including γ-rhodomycionone and α-
citromycinone.[12]

Polymer-bound chiral selenium electrophiles effect
asymmetric selenenylation reactions.[13] The
reagents are aryl selenenyl bromides, and they
were first developed for solution phase chemistry
and then modified for solid phase bead attachment
via an aryloxy moiety. The solid-phase reagents were applied toward the selenenylation of various alkenes
with good enantioselectivities. The products can be cleaved from the solid support using organotin hydride
reducing agents. Solid-supported reagents offers advantages over solution phase chemistry due to the ease of
workup and purification.
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Electrophilicity index

Fluorine 3.86

Chlorine 3.67

Bromine 3.40

Iodine 3.09

Hypochlorite 2.52

Sulfur dioxide 2.01

Carbon disulfide 1.64

Benzene 1.45

Sodium 0.88

Some selected values [14] (no dimensions)

Several methods exist to rank electrophiles in order of reactivity[15]

and one of them is devised by Robert Parr[14] with the
electrophilicity index ω given as:

with  the electronegativity and  chemical hardness. This equation
is related to the classical equation for electrical power:

where  is the resistance (Ohm or Ω) and  is voltage. In this
sense the electrophilicity index is a kind of electrophilic power.
Correlations have been found between electrophilicity of various
chemical compounds and reaction rates in biochemical systems and
such phenomena as allergic contact dermititis.

An electrophilicity index also exists for free radicals.[16] Strongly electrophilic radicals such as the halogens
react with electron-rich reaction sites, and strongly nucleophilic radicals such as the 2-hydroxypropyl-2-yl and
tert-butyl radical react with a preference for electron-poor reaction sites.

Superelectrophiles are defined as cationic electrophilic reagents with greatly enhanced reactivities in the
presence of superacids. These compounds were first described by George A. Olah.[17] Superelectrophiles
form as a doubly electron deficient superelectrophile by protosolvation of a cationic electrophile. As observed
by Olah, a mixture of acetic acid and boron trifluoride is able to remove a hydride ion from isobutane when
combined with hydrofluoric acid via the formation of a superacid from BF3 and HF. The responsible reactive
intermediate is the [CH3CO2H3]2+ dication. Likewise, methane can be nitrated to nitromethane with nitronium

tetrafluoroborate NO+
2BF−

4 only in presence of a strong acid like fluorosulfuric acid via the protonated
nitronium dication.

In gitionic (gitonic) superelectrophiles, charged centers are separated by no more than one atom, for example,
the protonitronium ion O=N+=O+—H (a protonated nitronium ion). And, in distonic superelectrophiles, they
are separated by 2 or more atoms, for example, in the fluorination reagent F-TEDA-BF4.[18]

Nucleophile
TRPA1,[19][20] the sensory neural target for electrophilic irritants in mammals.

1. "Nucleophiles and Electrophiles" (http://butane.chem.uiuc.edu/pshapley/genchem2/b5/1.html).
butane.chem.uiuc.edu. Retrieved 2020-09-21.

2. "Electrophile | chemistry" (https://www.britannica.com/science/electrophile). Encyclopedia
Britannica. Retrieved 2020-09-21.
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