Step 2 :- Primer binding

- > The leding strands is the simplest to replicated .
- > once the DNA strands have been separated, a short piece of RNA called a primer binds to the 3' end of the strand.
- > The primer always binds as the starting point for replication .
- Primers are generated by the enzyme <u>DNA primase</u>.
- DNA polymerase 3' can only nucleotides to existing strands of DNA.

Step 3 :- Elongation

- Enzymes known as <u>DNA polymerases</u> are responsible creating the new strands by a process called elongation.
- ➤ In eukaryotic cells polymerases alpha , delta and epsilon are the primary polymerases involved in DNA replication . Because replication proceeds in the 5' to 3' direction on the leading strand , the newly formed strands is continuous .
- > The lagging strands begins replication by binding with multiple primer .
- Each primer is only several bases apart .
- DNA polymerase then adds pieces of DNA, called Okazaki fragments, to the strand between primers.
- This process of replication is discontinuous as the newly created fragments are disjointed.
- Involves the addition of new nucleotides based on complementarity of the templated strands.
- > The daughter strands is elongated with the binding of more DNA nucleotides.