                           Constraints
The limitations on the motion of a system are called constraints .The motion is said to be constrained motion . Constraints are always related to forces which restrict the motion of the system.These forces are called forces of constraint. 
Holonomic and Nonholonomic Constraints
The nomenclature ‘holonomic’ constraints comes from the word ‘holos’which means ‘integer’ in Greek and ‘whole ‘ or intergrable’ in Latin languages .
A system is said to be non-holonomic .If it corresponds to non-integrable differential equations of constrains .




















	1


Degrees of freedom and constraints
Consider a system S with N particles, Pr (r=1,...,N), and their positions vector xr in some reference frame A. The 3N components specify the configuration of the system, S.

 (
T
)The configuration space is defined as:
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)The 3N scalar numbers are called configuration space variables or coordinates for the system.

The trajectories of the system in the configuration space are always continuous.
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A System of Two Particles on a Line
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Holonomic Constraints

Constraints on the position (configuration) of a system of particles are called holonomic constraints.

· Constraints in which time explicitly enters into the constraint equation are called rheonomic.

· Constraints in which time is not explicitly present are called scleronomic.


· Particle is constrained to lie on a plane:
A x1 + B x2 + C x3 + D = 0

· A particle suspended from a taut string in three dimensional space.
(x1 – a)2 +(x2 – b)2 +(x3 – c)2 – r2 = 0

· A particle on spinning platter (carousel)
x1 = a cos(t + ); x2 = a sin(t + )



· A particle constrained to move on a sphere in three-dimensional space whose radius changes with time t.
x1   dx1 + x2 dx2 + x3 dx3   - c2 dt = 0
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Holonomic Constraint
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Scleronomic, holonomic

Rheonomic, holonomic
t
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Definition 1


Nonholonomic Constraints
·  (
x
)A particle constrained to move on a

· All constraints that are not holonomic

Definition 2
· Constraints that constrain the velocities of particles but not their positions

We will use the second definition.

circle in three-dimensional space
whose radius changes with time t. x1 dx1 + x2 dx2 + x3 dx3 - c2 dt = 0
· The knife-edge constraint
[image: ][image: ]
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Aside: Inequality Constraints
Holonomic or non holonomic?
· Inequalities do not constrain the position in the same way as equality constraints do.
· Rosenberg classifies inequalities as nonholonomic constraints.
· We will classify equality constraints into holonomic equality constraints and non holonomic equality constraints and treat inequality constraints separately





Inequalities in mechanics lead to complementarity constraints!
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Complementarity Constraints
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Examples of Velocity Constraints


Example 1

Are these configuration constraints?

 (
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)A particle moving in a horizontal plane (call it the x-y plane) is steered in such a way that the slope of the trajectory is proportional to the time elapsed from t=0.
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When is a constraint on the motion nonholonomic?


Velocity constraint

[image: ]

We should be familiar with this question in the 3 dimensional case





 (
P
 
dx 
+ 
Q 
dy
 
+ 
Rdz
 
=0
v
)Or constraint on instantaneous motion
[image: ]
Pfaffian Form


Question
Can the above equation can be reduced to the form:
f(x1, x2, ..., xn-1, t) = 0






Can we construct a surface in 3-D whose normal at every point is given by v?
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When is a scleronomic constraint on motion in a three-dimensional configuration space nonholonomic?

Velocity constraint
[image: ]

Or constraint in the Pfaffian form
P dx + Q dy + Rdz =0	(1)

Question
Can the above equation can be reduced to the form:
f(x, y, z)=0
Or,
Can we at least say when the differential form (1) an exact differential?
df = P dx + Q dy + Rdz
· 
A sufficient condition for (1) to be integrable is that the differential form is an exact differential.

· [image: ][image: ][image: ]If it is an exact differential, there must exist a function f, such that



· The necessary and sufficient conditions for this to be true is that the first partial derivatives of P, Q, and R with respect to x, y, and z exist, and

				
Recall result from Stokes Theorem!
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Exactness and independent of path
[image: ]If v is continuous and has continuous first partials in a domain D, and the line integral


is independent of path C in D (that is, v.dr is exact) then


[image: ][image: ][image: ][image: ] (
C’’
C’
C
)(2)
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Necessary and sufficient condition for a motion constraint in 3-D space to be holonomic


Can the constraint in the Pfaffian form
P dx + Q dy + Rdz =0	(1) be reduced to the form:
f(x, y, z)=0

For the constraint to be integrable, it is necessary and sufficient that there exist an integrating factor (x, y, z), such that,
· 
If (3) is an exact differential, there must exist a function g, such that



· The necessary and sufficient conditions for this to be true is that the first partial derivatives of P, Q, and R with respect to x, y, and z exist, and


[image: ]P dx + Q dy + Rdz =0 (3) be an exact differential.
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[image: ][image: ][image: ][image: ]Does there exist  such that:







	




[image: ][image: ][image: ][image: ][image: ][image: ]

Necessary and sufficient condition for
[image: ][image: ][image: ](2) to be holonomic, provided v is a well-behaved vector field and
		15




1.	sin x3 dx1 - cos x3 dx2 = 0


Examples



[image: ] 

[image: ]




2. 2x2x3 dx1 + x1x3 dx2 + x1x2 dx3 = 0



x1 (2x2x3 dx1 +	x1x3 dx2 +	x1x2 dx3) = 0

[image: ]



[image: ]3.


 [image: ] 
d((x1)2 x2 x3) = 0


[image: ]	 University of Pennsylvania	16

Nonholonomic constraints in 3-D
 (
Other
 
nonholonomic
 
constraints
Holonomic
Nonholonomic
Holonomic
P
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Extension to 2-D rheonomic constraints
Compare


Can the constraint of the form
P dx + Q dy + Rdz =0 be reduced to the form:
f(x, y, z)=0

Can the constraint of the form
P dx + Q dy + Rdt =0 be reduced to the form:
f(x, y, t)=0






 (
Necessary
 
and
 
sufficient
 
condition
 
is
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same
 
if you
 
replace
 
z 
with
 
t
)









		18




dx2 – x3 dx1 = 0 and
dx3 – x1 dx2 = 0


Multiple Constraints




Are the constraint equations non holonomic?


Individually: YES!


Together:



[image: ]dx3 – x1 dx2 = dx3 – x1 (x3 dx1) = 0
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Frobenius Theorem: Generalization to n dimensions
 (
v
w
u
)n dimensional configuration space
m independent constraints (i=1,..., m)

[image: ][image: ]

The necessary and sufficient condition for the existence of m independent equations of the form:
fi(x1, x2, ..., xn) = 0,	i=1,..., m.
[image: ][image: ][image: ][image: ]is that the following equations be satisfied:
where uk and wl are components of any two n vectors that lie in the null space of the mxn coefficient matrix A = [aij]:
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[bookmark: _GoBack]
Generalized Coordinates and Number of Degrees of Freedom


Number of degrees of freedom of a holonomic system in any reference frame
· the minimum number of variables to completely specify the position of every particle in the system in the chosen reference

The variables are called generalized coordinates

No. of degrees of freedom

= No. of variables required to describe the system
- No. of independent configuration constraints



There can be no holonomic constraint equations that constrain* the values the generalized coordinates can have.

q1, q2, ..., qn denote the generalized coordinates for a system with n degrees of freedom in a reference frame A.
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Degrees of Freedom: Example



 (
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)	 (
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Q
)

No. of degrees of freedom	= No. of variables required to describe the system
- No. of independent configuration constraints
	 	22


Generalized Coordinates and Speeds

Holonomic Systems

Number of degrees of freedom of a system in any reference frame
· the minimum number of variables to completely specify the position of every particle in the system in the chosen reference

The variables are called generalized coordinates

q1, q2, ..., qn denote the generalized coordinates for a system with n degrees of freedom in a reference frame A.

n generalized coordinates specify the position (configuration of the system)

For a holonomic system, the number of independent speeds describing the rate of change of configuration of the system is also equal to n

In a system with n degrees of freedom in a reference frame A, there are n scalar quantities, u1, u2, ..., un (for that reference
frame) called generalized speeds. They that
are related to the derivatives of the generalized coordinates by :
[image: ][image: ]

where the nxn matrix Y = [Yij] is non singular and Z is a nx1 vector.
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Generalized Coordinates
q1 , q2 , q3 , q4 , q5
Generalized Speeds


Example 1


z





AC = u1 b1 + u2 b2 + u3 b3
u4 = derivative of q4 u5 = derivative of q5
x	q1
q5

q2


b2

b3	C
C*
q3	b1
P




y


q4


Locus of the

point of contact Q on the plane A
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Example 2

Bug moving radially on a turntable that can rotate 0)

Generalized coordinates in A
· s, 
· x1, x2
Generalized speeds




	[image: ]
[image: ] (
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b
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O
)[image: ][image: ][image: ][image: ] 		or	    	
Generalized speeds and derivatives of generalized coordinates




a2	[image: ]
[image: ]
a1	Appears in
rheonomic constraints
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Example 2: Turntable angular velocity is given


Bug moving radially on a rotating turntable 0)

Generalized coordinates in A
· s
· x1
Generalized speeds

[image: ][image: ]or

[image: ]
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a2	[image: ]
[image: ]
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Nonholonomic Constraints are Written in Terms of Speeds


m constraints in n speeds

[image: ] [image: ]


m speeds are written in terms of the n-m
(p) independent speeds

Define the number of degrees of freedom for a nonholonomic system in a reference frame A as p, the number of independent speeds that are required to completely specify the velocity of any particle belonging to the system, in the reference frame A.



   [image: ]  [image: ]
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Number of degrees of freedom


Example 3

· n – m = 2 degrees of freedom

Generalized coordinates
· (x1, x2, x3)

Speeds: Choice 1
· [image: ][image: ]forward velocity along the axis of the skate, vf
· [image: ][image: ][image: ][image: ]the	speed	of	rotation	about	the vertical axis, 
· and the lateral (skid) velocity in the transverse direction, vl


[image: ][image: ][image: ][image: ]Speeds: Choice 2
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