Unit IV- Industrial application of Chemistry

M.SC Semester II
Core Course V
Advances in Chemistry

Department of Chemistry
L.S COLLEGE MUZAFFARPUR
B. R. A. BIHAR UNIVERSITY

TOPIC:- Cement

Contents

- Introduction
- Classification of cements
- Portland Cement
- Raw materials of Portland cement
- Cement Manufacturing Process
- Flow chart of Portland Cement manufacturing process
- Cement Manufacturing Video
- Mixing and Crushing
 - Dry Process
 - Wet Process
- Burning Process
 - View of complete setup
 - Rotary Klin zones
 - Chemical Reactions
- Grinding and Packaging
- Setting and hardening
 - Flow chart
 - Sequence
 - Chemical Reactions
- Special Cement

Introduction

"A cement is a binder, a substance that sets and hardens and can bind other materials together. It principal constituents for constructional purpose are compounds of Ca(calcareous) and Al + Si (argillaceous)"

Chemical Composition of Cement

Lime 63%
Silica 22%
Alumina 06%
Iron oxide 03%

Gypsum 01 to 04%

The cements have property of setting and hardening under water, by virtue of certain chemical reaction with it and are called 'hydraulic cements'

Classification of Cements

It is the variety of artificial cement. It is called Portland cement because on hardening (setting) its color resembles to rocks near Portland in England.

Portland Cement

"An extremely finely ground product by calcinising together, at above 1500°C, an intimate and properly proportioned mixture of argillaceous (clay) and calcareous (lime) raw materials, without the addition of anything subsequent to calcination, excepting the retarder gypsum"

Pile of Portland cement

Clinker	CCN	Mass %
Tricalcium silicate (CaO) ₃ ·SiO ₂	C_3S	45–75%
Dicalcium silicate $(CaO)_2 \cdot SiO_2$	C_2S	7–32%
Tricalcium aluminate $(CaO)_3$ · Al_2O_3	C ₃ A	0–13%
Tetracalcium aluminoferrite (CaO) ₄ ·Al ₂ O ₃ ·Fe ₂ O ₃	C ₄ AF	0–18%
Gypsum CaSO ₄ · 2 H ₂ O		2-10%
Calcium Oxide - CaO		2%
Magnesium Oxide - MgO		4%

Raw materials of Portland Cement and it's use

Manufacturing Cement

- 1. Mixing and Crushing of raw materials
 - a) Dry process
 - a) Wet process
- 2. Burning
- 3. Grinding
- 4. Storage and Packing

Manufacturing of Portland cement

Mixing and Crushing: a) Dry Process

in ball mills

4. Storage & Packing

Mixing and Crushing: b) Wet Process

Figure showing manufacturing of cement using wet process

- Limestone is crushed, powdered and stored in silos
- Clay is washed with water to remove organic matter and stored in basin
- Both these materials are mixed in grinding mill to form slurry
- Slurry contains 38-40% water stored in correcting basin

Burning Process: View of complete setup

Fig. Rotary Cement Klin

Burning Process: Zones of Rotary Klin

- Upper part of the kiln
- About 400 °C
- Most of the water in the slurry gets evaporated
- Center part of the kiln
- About 700°C − 1000°C
- Lime gets decomposed into CaO and CO₂
- Lower part of the kiln
- About 1250°C 1500°C
- Reacts with clay to form various bouge compounds

Burning Process: Chemical Reactions in Rotary Klin Zones

• Calcination Zone :

• Clinkering Zone :

$$2CaO + SiO_2$$
 Ca_2SiO_4 (Dicalcium silicate $-C_2S$)

$$3CaO + SiO_2$$
 Ca_3SiO_5 (Tricalcium silicate $-C_3S$)

$$3CaO + Al_2O_3$$
 $Ca_3Al_2O_6$ (Tricalcium aluminate $-C_3A$)

$$4\text{CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3$$
 $\text{Ca}_4\text{Al}_2\text{Fe}_2\text{O}_{10}$ (Tricalcium aluminoferrite – C_4AF)

Grinding and Packaging

Grinding

- Cooled clinkers are ground to fine powder in ball mills
- At final stages of grounding about 2-3% of powdered gypsum is added.
 (This is to avoid setting of cement quickly when it comes in contact with water)
- Gypsum acts as a retarding agent for early setting of the cement

$$3CaO + Al_2O_3 + x CaSO_4 . 7H_2O$$
 \longrightarrow $3CaO . Al_2O_3 . xCaSO_4 . 7H_2O$
After initial set Gypsum Tricalcium sulphoaluminate (Insoluble)

Packaging

and Charlen

- Ground cement is stored in silos
- From silos they are automatically packaged into bag which are about 50 Kg

Properties of cement: Setting and hardening

- When the cement is mixed with water, hydration and hydrolysis reactions of Bogue compounds of cement begin, resulting in formation of gel and crystalline products.
- These products have the ability to surround inert materials liks sand, bricks, crushed stones, etc.
 - "Setting is the stiffening of original plastic mass due to the formation of tobermonite gel". It can be divided into 2 stages a) Initial Set b)Final Set
 - ¬Initial Set is when paste being to stiffen
 - ¬Final Set is when the paste beginning to harden and able to sustain some loads
 - "Hardening is the development of strength due to formation of crystals"

Setting and hardening

Figure showing setting and hardening of cement

Sequence of changes during setting and hardening

Setting and Hardening: Chemical Reactions

Day 1:

- •When cement is mixed with water, hydration of tricalcium aluminate (C_3A) takes place within a day
- •The paste becomes rigid, which is known as Initial set or Flash set

$$3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 6\text{H}_2\text{O} \\ \text{Tricalciumaluminate} \\ \text{[OR]} \\ \text{C}_3\text{A} + 6\text{H}_2\text{O} \\ \text{C}_3\text{A} \cdot 6\text{H}_2\text{O}$$

•To avoid early setting of C₃A, gypsum is added which acts as retarding agent

$$C_{3}A + 3CaSO_{4} \cdot 2H_{2}O \\ \hline \\ Caclium \ sulpho \ aluminate$$

Day - 2 to 7:

- •After hydration of C_3A , C_3S beings to hydrate to give tobermonite gel and crystalline $Ca(OH)_2$, which is responsible for initial strength of the cement
- •The hydration of C₃S gets completed within 7 days

$$2[3\text{CaO .SiO}_2] + 6\text{H}_2\text{O} \longrightarrow 3\text{CaO.2SiO}_2. \ 3\text{H}_2\text{O} + 3\text{Ca}(\text{OH})_2 + 500 \ \text{kJ/Kg}$$

$$\text{Tricalcium silicate} \qquad \text{Tobermonite gel} \qquad \text{Crystalline}$$

$$[OR]$$

$$2\text{C}_3\text{S} + 6\text{H}_2\text{O} \longrightarrow \text{C}_3\text{S}_2. \ 3\text{H}_2\text{O} + 3\text{Ca}(\text{OH})_2 + 500 \ \text{kJ/Kg}$$

Tobermonite gel possesses a very high surface area and very high adhesive property

Setting and Hardening: Chemical Reactions

contd...

Day -7 to 28:

•Dicalcium silicate (C₂S) reacts with water very slowly and gets completed in 7 to 28 days

•Increase of strength is due to formation of tobermonite gel and crystalling Ca(OH)₂ of both C₂S and C₃S

Setting and Hardening: Chemical Reactions

contd...

• After initial hyderation of tetracalcium alumino ferrite (C_4AF) , hardening takes place through crystallization, along with C_2S

Graphical representation of development of compressive strength

"Hydration and Hydrolysis of Bogue compounds causes cement to develop compressive strength" (Shown in the figure)

Function of Gypsum (CaSO₄·2H₂O) in cement

• Tricalcium aluminate (C₃A) combines with water very rapidly with the evolution of large amount of heat

$$C_3A + 6H_2O$$
 $C_3A \cdot 6H_2O + Heat$

- After the initial set, the paste becomes stiff.
- Adding gypsum retards the dissolution of C₃A by forming *insoluble calcium* sulpho-aluminate

• The above reaction shows how gypsum retards the early initial set of cement

Heat of Hydration of Cement

- When cement is mixed with water, hydration, hydrolysis an gelation reaction starts and some heat is liberated
- On an average of 500 kJ/Kg of heat is evolved during complete hydration of cement

Bogue Compounds	Heat of hydration (kJ/kg)
C_3A	880
C_3S	500
C_4AF	420
C_2S	250

Heat of hydration of Bogue compounds

Special Cement: White Portland Cement (or) White cement

- Is white in color due to absence of iron compounds
- Obtained by calcining the raw materials of Portland cement which are free from iron oxide

Properties

- More expensive than ordinary Portland cement
- Acts as pore blocking and water repelling agent
- Repairing and joining marble pillars and blocks
- Manufacture of tiles and mosaic walls

Special Cement: Water proof Cement (or) Hydrophobic cement

 Is a cement obtained by adding water proofing substances like calcium stearate, aluminium stearate and gypsum with tannic acid to ordinary Portland cement

Properties

- More expensive than ordinary Portland cement
- Acts as pore blocking and water repelling agent

- Used to make concrete which is impervious to water under pressure
- Used in construction, where absorption of water need to be avoided
- Used in construction of bridges and under water constructions