Matrices

Inverse of Matrix - Part 1

Inverse of a Matrix

- The operation of dividing one matrix by another does not exist in matrix theory, but equivalent of division of a unit matrix by any square matrix can be accomplished (in most cases) by a process known as inversion of matrix.
- In ordinary algebra, if $x \times y=1$, then $x=1 / y$ or we may say that x is inverse of y or vice versa.

Inverse of a Matrix

- Similarly, if A is a matrix and its inverse A^{-1}, then their product must be equal to the identity matrix.
- $A \times A^{-1}=I(I$ is identity matrix).
- $A^{-1}=I / A$

Inverse of a Matrix

- Uses of Inverse Matrix:
i. Solving simultaneous equation.
ii. Input Output analysis
iii. Regression analysis

Inverse of a Matrix

Conditions to calculate inverse of matrix:
I. The matrix needs to be square matrix
II. The matrix must non-singular matrix i.e., the determinant should not be zero.
\square Method to Calculate Inverse of Matrix:
A. Co-factor Method- Using adjoint matices
B. Gauss Elimination Method

Inverse of a Matrix

A. Co-factor Method:

Formula: $A^{-1}=\frac{1}{|A|} \cdot \operatorname{Adj} A$

- Where,
- Adj.A is transpose of matrix of cofactors of the elements of matrix A.

To be Continued

Inverse of a Matrix

THANK YOU

