Matrices

Transpose of Matrix

Transpose of a Matrix

- Transpose of a Matrix: A matrix obtained by interchanging rows and columns. It is denoted by A^{\prime} or A^{T}.
- For example: if matrix A is
- $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then transpose of matrix would be
- $A^{\prime}=\left[\begin{array}{lll}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$

Transpose of a Matrix

- Similarly,
- if, $A=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$, then
- $A^{\prime}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

Transpose of a Matrix

- Example:
- if, $A=\left|\begin{array}{lll}2 & 3 & 4 \\ 1 & 8 & 9\end{array}\right|$, then find A^{\prime}
- Solution: Change items in rows into columns
- $A^{\prime}=\left|\begin{array}{ll}2 & 1 \\ 3 & 8 \\ 4 & 9\end{array}\right|$ Answer

Transpose of a Matrix

- Properties of Transpose of Matrix:

1. Transpose of transpose of a matrix is original matrix.
i.e. $\quad\left(\boldsymbol{A}^{\prime}\right)^{\prime}=\boldsymbol{A}$
2. Transpose of sum of matrices is the sum of the transpose of the individual matrices.
i.e. $\quad(A+B)^{\prime}=\boldsymbol{A}^{\prime}+B^{\prime}$

Transpose of a Matrix

3. Transpose of a product of matrices is the product of the transposes of the matrices taken in reverse order.
i.e. $(\boldsymbol{A B})^{\prime}=\left(\boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime}\right)$

Transpose of a Matrix

THANK YOU

