Digital electronics
Lecture - 2
Dr. Tarun Kumar Dey,
Associate professor
Department of Physics,
L.S College; BRA Bihar University, Muzzaffarpur

Youtube channel – Tarun Kumar Dey

**Online Course Link:** 

http::/findmementor.com/mentee/view details/tkdeyphy

# Rule in Boolean Algebra

- Following are the important rules used in Boolean algebra..
- Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.
- Complement of a variable is represented by an over bar (-).
- Thus, complement of variable B is represented as  $\bar{B}$  Thus if B = 0 then
- $\bar{B}$  = 1 and B = 1 then  $\bar{B}$  = 0
- ORing of the variables is represented by a plus (+) sign between them.
- For example ORing of A, B, C is represented as A + B + C.

Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C

Sometimes the dot may be omitted like ABC.

## **Boolean Laws**

There are six types of Boolean Laws.

### **Commutative law**

Any binary operation which satisfies the following expression is refed to as commutative operation.

$$A + B = B + A$$
  
 $A.B = B.A$ 

Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.

## **Associative law**

This law states that the order in which the logic operations are performed is irrelevant as their effect is the same.

$$A + (B + C) = (A + B) + C$$
  
 $A (BC) = (AB)C$ 

### **Distributive law**

Distributive law states the following condition.

$$A(B+C) = AB + AC$$

#### **AND law**

These laws use the AND operation. Therefore they are called as **AND** laws.

$$A.0 = 0$$

$$A.1 = A$$

$$A.A = A$$

$$A.\bar{A} = 0$$

#### **OR law**

These laws use the OR operation. Therefore, they are called as **OR** laws.

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

### **INVERSION** law

This law uses the NOT operation. The inversion law states that double inversion of a variable results in the original variable itself.

$$A.\bar{A} = 0$$

# **Important Boolean Theorems**

Following are few important Boolean Theorems.